login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A036038 Triangle of multinomial coefficients. 79
1, 1, 2, 1, 3, 6, 1, 4, 6, 12, 24, 1, 5, 10, 20, 30, 60, 120, 1, 6, 15, 20, 30, 60, 90, 120, 180, 360, 720, 1, 7, 21, 35, 42, 105, 140, 210, 210, 420, 630, 840, 1260, 2520, 5040, 1, 8, 28, 56, 70, 56, 168, 280, 420, 560, 336, 840, 1120, 1680, 2520, 1680, 3360, 5040, 6720 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,3
COMMENTS
The number of terms in the n-th row is the number of partitions of n, A000041(n). - Amarnath Murthy, Sep 21 2002
For each n, the partitions are ordered according to A-St: first by length and then lexicographically (arranging the parts in nondecreasing order), which is different from the usual practice of ordering all partitions lexicographically. - T. D. Noe, Nov 03 2006
For this ordering of the partitions, for n >= 1, see the remarks and the C. F. Hindenburg link given in A036036. - Wolfdieter Lang, Jun 15 2012
The relation (n+1) * A134264(n+1) = A248120(n+1) / a(n) where the arithmetic is performed for matching partitions in each row n connects the combinatorial interpretations of this array to some topological and algebraic constructs of the two other entries. Also, these seem (cf. MOPS reference, Table 2) to be the coefficients of the Jack polynomial J(x;k,alpha=0). - Tom Copeland, Nov 24 2014
The conjecture on the Jack polynomials of zero order is true as evident from equation a) on p. 80 of the Stanley reference, suggested to me by Steve Kass. The conventions for denoting the more general Jack polynomials J(n,alpha) vary. Using Stanley's convention, these Jack polynomials are the umbral extensions of the multinomial expansion of (s_1*x_1 + s_2*x_2 + ... + s_(n+1)*x_(n+1))^n in which the subscripts of the (s_k)^j in the symmetric monomial expansions are finally ignored and the exponent dropped to give s_j(alpha) = j-th row polynomial of A094638 or |A008276| in ascending powers of alpha. (The MOPS table has some inconsistency between n = 3 and n = 4.) - Tom Copeland, Nov 26 2016
REFERENCES
Abramowitz and Stegun, Handbook, p. 831, column labeled "M_1".
LINKS
David W. Wilson, Table of n, a(n) for n = 1..11731 (rows 1 through 26).
Milton Abramowitz and Irene A. Stegun, editors, Multinomials: M_1, M_2 and M_3, Handbook of Mathematical Functions, December 1972, pp. 831-2.
I. Dumitriu, A. Edelman, G. Schuman, MOPS: Multivariate orthogonal polynomials (symbolically), arxiv:0409066 [math-ph], 2004.
Wolfdieter Lang, First 10 rows and more.
R. Stanley, Some combinatorial properties of Jack symmetric functions, Adv. in Math., 77, p. 76-115, 1989.
FORMULA
The n-th row is the expansion of (x_1 + x_2 + ... + x_(n+1))^n in the basis of the monomial symmetric polynomials (m.s.p.). E.g., (x_1 + x_2 + x_3 + x_4)^3 = m[3](x_1,..,x_4) + 3*m[1,2](x_1,..,x_4) + 6*m[1,1,1](x_1,..,x_4) = (Sum_{i=1..4} x_i^3) + 3*(Sum_{i,j=1..4;i != j} x_i^2 x_j) + 6*(Sum_{i,j,k=1..4;i < j < k} x_i x_j x_k). The number of indeterminates can be increased indefinitely, extending each m.s.p., yet the expansion coefficients remain the same. In each m.s.p., unique combinations of exponents and subscripts appear only once with a coefficient of unity. Umbral reduction by replacing x_k^j with x_j in the expansions gives the partition polynomials of A248120. - Tom Copeland, Nov 25 2016
From Tom Copeland, Nov 26 2016: (Start)
As an example of the umbral connection to the Jack polynomials: J(3,alpha) = (Sum_{i=1..4} x_i^3)*s_3(alpha) + 3*(Sum_{i,j=1..4;i!=j} x_i^2 x_j)*s_2(alpha)*s_1(alpha)+ 6*(Sum_{i,j,k=1..4;i < j < k} x_i x_j x_k)*s_1(alpha)*s_1(alpha)*s_1(alpha) = (Sum_{i=1..4} x_i^3)*(1+alpha)*(1+2*alpha)+ 3*(sum_{i,j=1..4;i!=j} x_i^2 x_j)*(1+alpha) + 6*(Sum_{i,j,k=1..4;i < j < k} x_i x_j x_k).
See the Copeland link for more relations between the multinomial coefficients and the Jack symmetric functions. (End)
EXAMPLE
1;
1, 2;
1, 3, 6;
1, 4, 6, 12, 24;
1, 5, 10, 20, 30, 60, 120;
1, 6, 15, 20, 30, 60, 90, 120, 180, 360, 720;
MAPLE
nmax:=7: with(combinat): for n from 1 to nmax do P(n):=sort(partition(n)): for r from 1 to numbpart(n) do B(r):=P(n)[r] od: for m from 1 to numbpart(n) do s:=0: j:=0: while s<n do j:=j+1: s:=s+B(m)[j]: x(j):=B(m)[j]: end do; jmax:=j; for r from 1 to n do q(r):=0 od: for r from 1 to n do for j from 1 to jmax do if x(j)=r then q(r):=q(r)+1 fi: od: od: A036038(n, m) := n!/ (mul((t!)^q(t), t=1..n)); od: od: seq(seq(A036038(n, m), m=1..numbpart(n)), n=1..nmax); # Johannes W. Meijer, Jul 14 2016
MATHEMATICA
Flatten[Table[Apply[Multinomial, Reverse[Sort[IntegerPartitions[i], Length[ #1]>Length[ #2]&]], {1}], {i, 9}]] (* T. D. Noe, Nov 03 2006 *)
PROG
(Sage)
def ASPartitions(n, k):
Q = [p.to_list() for p in Partitions(n, length=k)]
for q in Q: q.reverse()
return sorted(Q)
def A036038_row(n):
return [multinomial(p) for k in (0..n) for p in ASPartitions(n, k)]
for n in (1..10): print(A036038_row(n))
# Peter Luschny, Dec 18 2016, corrected Apr 30 2022
CROSSREFS
Cf. A036036-A036040. Different from A078760. Row sums give A005651.
Cf. A183610 is a table of sums of powers of terms in rows.
Cf. A134264 and A248120.
Cf. A096162 for connections to A130561.
Sequence in context: A051537 A338797 A171999 * A210237 A078760 A348113
KEYWORD
nonn,easy,nice,tabf,look,hear
AUTHOR
EXTENSIONS
More terms from David W. Wilson and Wouter Meeussen
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 25 09:15 EDT 2024. Contains 371967 sequences. (Running on oeis4.)