login
A114897
a(1) = 1. a(n+1) = number of earlier terms a(k) (1 <= k <= n) where a(k)+n is a prime.
4
1, 1, 2, 1, 3, 1, 4, 1, 1, 2, 7, 2, 7, 1, 1, 4, 11, 3, 9, 2, 4, 4, 11, 0, 2, 4, 4, 11, 11, 6, 14, 2, 5, 7, 6, 8, 16, 10, 4, 15, 13, 9, 13, 10, 5, 9, 14, 5, 9, 9, 11, 10, 17, 6, 9, 11, 13, 19, 20, 11, 22, 8, 17, 14, 13, 14, 20, 13, 13, 22, 23, 9, 20, 8, 12, 16, 11, 13, 21, 13, 13, 16, 14, 12
OFFSET
1,3
FORMULA
a(n) = A123541(n-1) for n>3. - T. D. Noe, Apr 29 2007
EXAMPLE
If we add 10 to each of the first 10 terms of the sequence, we get
[11,11,12,11,13,11,14,11,11,12]. Of these only the six 11's and the 13 are primes. So a(11) = 7.
MATHEMATICA
a[1] = 1; a[n_] := a[n] = (For[k = 1; cnt = 0, k < n, k++, If[PrimeQ[a[k] + n - 1], cnt++]]; cnt); Table[a[n], {n, 1, 84}] (* Jean-François Alcover, Sep 13 2013 *)
PROG
(PARI) {v=[1]; for(n=2, 250, w=vector(length(v)+1); s=0; for(i=1, length(v), w[i]=v[i]; if(isprime(v[i]+n-1), s++)); w[length(v)+1]=s; v=w); v} (Herrgesell)
(Haskell)
a114897 n = a114897_list !! (n-1)
a114897_list = 1 : f 1 [1] where
f x zs = z : f (x + 1) (z : zs) where
z = toInteger $ sum $ map (a010051 . (+ x)) zs
-- Reinhard Zumkeller, Jul 31 2012
CROSSREFS
KEYWORD
nonn,nice
AUTHOR
Leroy Quet, Jan 05 2006
EXTENSIONS
More terms from Lambert Herrgesell (zero815(AT)googlemail.com), Jan 16 2006
STATUS
approved