login
A114699
A000799(n) - A064355(n).
0
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 2, 0, 0, 3, 0, 0, 6, 0, 0, 10, 1, 0, 18, 0, 0, 36, 0, 0, 62, 0, 4, 113, 0, 0, 210, 6, 0, 391, 0, 0, 739, 0, 0, 1365, 2, 20, 2570, 0, 0, 4854, 37, 4, 9198, 0, 0, 17544, 0, 0, 33296, 0, 126, 63550, 0, 0, 121574, 248, 0, 233016, 0, 0, 447828, 0
OFFSET
0,15
COMMENTS
There was a suggestion that these were the same sequence, but they are not.
FORMULA
A000799(n) = A064355(n) just for: (1) n a power of 2. (2) n = p * 2^k, where p is a prime with p > 2^{2^k - k}. (Including the case k=0. ) (3) n = 9. -Franklin T. Adams-Watters, Feb 14 2006
MATHEMATICA
f[n_] := Block[{d = Select[Divisors@n, OddQ@# &]}, Floor[2^n/n] - Plus @@ (2^(n/d)*MoebiusMu@d)/n]; Array[f, 76] (* Robert G. Wilson v *)
CROSSREFS
Sequence in context: A035377 A136274 A290976 * A182797 A212163 A212195
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 20 2006
EXTENSIONS
More terms from Robert G. Wilson v, Feb 20 2006
STATUS
approved