login
A290976
Expansion of 1 - x/(1 - x^3/(1 - x^6/(1 - x^10/(1 - x^15/(1 - x^21/(1 - ... - x^(n*(n+1)/2)/(1 - ...))))))), a continued fraction.
0
1, -1, 0, 0, -1, 0, 0, -1, 0, 0, -2, 0, 0, -3, 0, 0, -5, 0, 0, -8, -1, 0, -13, -2, 0, -21, -5, 0, -34, -10, -1, -55, -20, -2, -89, -39, -6, -144, -73, -13, -234, -135, -29, -379, -245, -62, -617, -440, -126, -1003, -784, -253, -1636, -1383, -494, -2673, -2429, -952
OFFSET
0,11
FORMULA
Convolution inverse of A206740.
EXAMPLE
G.f. = 1 - x - x^4 - x^7 - 2*x^10 - 3*x^13 - 5*x^16 - 8*x^19 - ...
CROSSREFS
Cf. A206740.
Sequence in context: A175676 A035377 A136274 * A114699 A182797 A212163
KEYWORD
sign
AUTHOR
Seiichi Manyama, Aug 16 2017
STATUS
approved