login
This site is supported by donations to The OEIS Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A114205 Write decimal expansion of 1/n as 0.PPP...PQQQ..., where QQQ... is the cyclic part. If the expansion does not terminate, any leading 0's in QQQ... are regarded as being at the end of the PPP...P part. Sequence gives PPP...P, right justified, with leading zeros omitted. 6
5, 0, 25, 2, 1, 0, 125, 0, 1, 0, 8, 0, 0, 0, 625, 0, 0, 0, 5, 0, 0, 0, 41, 4, 0, 0, 3, 0, 0, 0, 3125, 0, 0, 0, 2, 0, 0, 0, 25, 0, 0, 0, 2, 0, 0, 0, 208, 0, 2, 0, 1, 0, 0, 0, 17, 0, 0, 0, 1, 0, 0, 0, 15625, 0, 0, 0, 1, 0, 0, 0, 13, 0, 0, 1, 1, 0, 0, 0, 125, 0, 0, 0, 1, 0, 0, 0, 11, 0, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

2,1

COMMENTS

b(n) = A114206(n) gives the length of P (including leading zeros), c(n) = A036275(n) gives the smallest cycle in QQQ... (including terminating zeros) and d(n) = A051626(n) gives the length of that cycle.

Thus 1/n = 10^(-b(n)) * ( a(n) + c(n)/(10^d(n) - 1) ). When c(n)=d(n)=0, the fraction c(n)/(10^d(n) - 1), which is 0/0, evaluates (by definition) to 0.

LINKS

Table of n, a(n) for n=2..90.

EXAMPLE

n .. expansion of 1/n .... a b c d

2 .50000000000000000000... 5 1 0 0

3 .33333333333333333333... 0 0 3 1

4 .25000000000000000000... 25 2 0 0

5 .20000000000000000000... 2 1 0 0

6 .16666666666666666667... 1 1 6 1

7 .14285714285714285714... 0 0 142857 6

8 .12500000000000000000... 125 3 0 0

9 .11111111111111111111... 0 0 1 1

10 .1000000000000000000... 1 1 0 0

11 .0909090909090909090... 0 1 90 2

12 .0833333333333333333... 8 2 3 1

13 .0769230769230769230... 0 1 769230 6

14 .0714285714285714285... 0 1 714285 6

15 .0666666666666666666... 0 1 6 1

16 .0625000000000000000... 625 4 0 0

MAPLE

A114205 := proc(n) local sh, lpow, mpow, a, b ; lpow:=1 ; while true do for mpow from lpow-1 to 0 by -1 do if (10^lpow-10^mpow) mod n =0 then a := (10^lpow-10^mpow)/n ; sh := 10^(lpow-mpow)-1 ; b := a mod sh ; a := floor(a/sh) ; while b>0 and b*10 < sh+1 do a := 10*a ; b := 10*b ; end ; RETURN(a) ; fi ; od ; lpow := lpow+1 ; od ; end: for n from 2 to 600 do printf("%d %d ", n, A114205(n)) ; od ; # R. J. Mathar, Oct 19 2006

MATHEMATICA

fa[n_] := Block[{p}, p = First[RealDigits[1/n]]; If[ ! IntegerQ[Last[p]], p = Most[p]]; FromDigits[p]]; Table[fa[n], {n, 100}] (* Ray Chandler *)

Mathematica code from Hans Havermann, Oct 19 2006:

r[x_] := RealDigits[1/x]

w[x_] := First[r[x]]

f[x_] := First[w[x]]

l[x_] := Last[w[x]]

z[x_] := Last[r[x]]

a[x_] := Which[IntegerQ[l[x]], FromDigits[w[x]], IntegerQ[f[x]] ==False, 0, True, FromDigits[Drop[w[x], -1]]]

b[x_] := Which[IntegerQ[l[x]], Length[w[x]]-1*z[x], IntegerQ[f[x]] ==False, -1*z[x], True, Length[Drop[w[x], -1]]-1*z[x]]

c[x_] := Which[IntegerQ[l[x]], 0, IntegerQ[f[x]]==False, FromDigits[f[x]], True, FromDigits[l[x]]]

d[x_] := Which[IntegerQ[l[x]], 0, IntegerQ[f[x]]==False, Length[f[x]], True, Length[l[x]]]

CROSSREFS

Cf. A114206, A036275, A051626, A060284, A007732.

Sequence in context: A279700 A279603 A022665 * A316464 A167315 A167362

Adjacent sequences:  A114202 A114203 A114204 * A114206 A114207 A114208

KEYWORD

nonn,base

AUTHOR

N. J. A. Sloane, Oct 17 2006

EXTENSIONS

More terms from Ray Chandler and Hans Havermann, Oct 18 2006

I would also like to get programs that produce this and A114206, A036275, A051626 in Maple.

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 17 14:12 EST 2019. Contains 319225 sequences. (Running on oeis4.)