login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A051626 Period of decimal representation of 1/n, or 0 if 1/n terminates. 33
0, 0, 1, 0, 0, 1, 6, 0, 1, 0, 2, 1, 6, 6, 1, 0, 16, 1, 18, 0, 6, 2, 22, 1, 0, 6, 3, 6, 28, 1, 15, 0, 2, 16, 6, 1, 3, 18, 6, 0, 5, 6, 21, 2, 1, 22, 46, 1, 42, 0, 16, 6, 13, 3, 2, 6, 18, 28, 58, 1, 60, 15, 6, 0, 6, 2, 33, 16, 22, 6, 35, 1, 8, 3, 1, 18, 6, 6, 13, 0, 9, 5, 41, 6, 16, 21, 28, 2, 44, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,7

COMMENTS

Essentially same as A007732.

For any prime number p: if a(p) > 0, a(p) divides p-1. - David Spitzer, Jan 09 2017

LINKS

T. D. Noe, Table of n, a(n) for n = 1..10000

Project Euler, Reciprocal cycles: Problem 26

Eric Weisstein's World of Mathematics, Repeating Decimal

Index entries for sequences related to decimal expansion of 1/n

FORMULA

a(n)=A132726(n,1); a(n)=a(A132740(n)); a(A132741(n))=a(A003592(n))=0. - Reinhard Zumkeller, Aug 27 2007

EXAMPLE

From M. F. Hasler, Dec 14 2015: (Start)

a(1) = a(2) = 0 because 1/1 = 1 and 1/2 = 0.5 have a finite decimal expansion.

a(3) = a(6) = a(9) = a(12) = 1 because 1/3 = 0.{3}*, 1/6 = 0.1{6}*, 1/9 = 0.{1}*, 1/12 = 0.08{3}* where the sequence of digits {...}* which repeats indefinitely is of length 1.

a(7) = 6 because 1/7 = 0.{142857}* with a period of 6.

a(17) = 16 because 1/17 = 0.{0588235294117647}* with a period of 16.

a(19) = 18 because 1/19 = 0.{052631578947368421}* with a period of 18. (End)

MAPLE

A051626 := proc(n) local lpow, mpow ;

    if isA003592(n) then

       RETURN(0) ;

    else

       lpow:=1 ;

       while true do

          for mpow from lpow-1 to 0 by -1 do

              if (10^lpow-10^mpow) mod n =0 then

                 RETURN(lpow-mpow) ;

              fi ;

          od ;

          lpow := lpow+1 ;

       od ;

    fi ;

end: # R. J. Mathar, Oct 19 2006

MATHEMATICA

r[x_]:=RealDigits[1/x]; w[x_]:=First[r[x]]; f[x_]:=First[w[x]]; l[x_]:=Last[w[x]]; z[x_]:=Last[r[x]];

d[x_] := Which[IntegerQ[l[x]], 0, IntegerQ[f[x]]==False, Length[f[x]], True, Length[l[x]]]; Table[d[i], {i, 1, 90}] (* Hans Havermann, Oct 19 2006 *)

fd[n_] := Block[{q}, q = Last[First[RealDigits[1/n]]]; If[IntegerQ[q], q = {}]; Length[q]]; Table[fd[n], {n, 100}] (* Ray Chandler, Dec 06 2006 *)

Table[Length[RealDigits[1/n][[1, -1]]], {n, 90}] (* Harvey P. Dale, Jul 03 2011 *)

PROG

(PARI) A051626(n)=if(1<n/=5^valuation(n, 5)<<valuation(n, 2), znorder(Mod(10, n)), 0) \\ M. F. Hasler, Dec 14 2015

(Python)

def A051626(n):

    if isA003592(n):

        return 0

    else:

        lpow=1

        while True:

            for mpow in range(lpow-1, -1, -1):

                if (10**lpow-10**mpow) % n == 0:

                    return lpow-mpow

            lpow += 1 # Kenneth Myers, May 06 2016

CROSSREFS

Essentially same as A007732. Cf. A002371, A048595, A006883, A036275, A114205, A114206, A001913.

Sequence in context: A333275 A293071 A084680 * A264808 A200229 A137785

Adjacent sequences:  A051623 A051624 A051625 * A051627 A051628 A051629

KEYWORD

nonn,base,easy

AUTHOR

J. Lowell

EXTENSIONS

More terms from James A. Sellers

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 1 03:58 EST 2020. Contains 338833 sequences. (Running on oeis4.)