The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A051626 Period of decimal representation of 1/n, or 0 if 1/n terminates. 33
 0, 0, 1, 0, 0, 1, 6, 0, 1, 0, 2, 1, 6, 6, 1, 0, 16, 1, 18, 0, 6, 2, 22, 1, 0, 6, 3, 6, 28, 1, 15, 0, 2, 16, 6, 1, 3, 18, 6, 0, 5, 6, 21, 2, 1, 22, 46, 1, 42, 0, 16, 6, 13, 3, 2, 6, 18, 28, 58, 1, 60, 15, 6, 0, 6, 2, 33, 16, 22, 6, 35, 1, 8, 3, 1, 18, 6, 6, 13, 0, 9, 5, 41, 6, 16, 21, 28, 2, 44, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,7 COMMENTS Essentially same as A007732. For any prime number p: if a(p) > 0, a(p) divides p-1. - David Spitzer, Jan 09 2017 LINKS T. D. Noe, Table of n, a(n) for n = 1..10000 Project Euler, Reciprocal cycles: Problem 26 Eric Weisstein's World of Mathematics, Repeating Decimal FORMULA a(n)=A132726(n,1); a(n)=a(A132740(n)); a(A132741(n))=a(A003592(n))=0. - Reinhard Zumkeller, Aug 27 2007 EXAMPLE From M. F. Hasler, Dec 14 2015: (Start) a(1) = a(2) = 0 because 1/1 = 1 and 1/2 = 0.5 have a finite decimal expansion. a(3) = a(6) = a(9) = a(12) = 1 because 1/3 = 0.{3}*, 1/6 = 0.1{6}*, 1/9 = 0.{1}*, 1/12 = 0.08{3}* where the sequence of digits {...}* which repeats indefinitely is of length 1. a(7) = 6 because 1/7 = 0.{142857}* with a period of 6. a(17) = 16 because 1/17 = 0.{0588235294117647}* with a period of 16. a(19) = 18 because 1/19 = 0.{052631578947368421}* with a period of 18. (End) MAPLE A051626 := proc(n) local lpow, mpow ;     if isA003592(n) then        RETURN(0) ;     else        lpow:=1 ;        while true do           for mpow from lpow-1 to 0 by -1 do               if (10^lpow-10^mpow) mod n =0 then                  RETURN(lpow-mpow) ;               fi ;           od ;           lpow := lpow+1 ;        od ;     fi ; end: # R. J. Mathar, Oct 19 2006 MATHEMATICA r[x_]:=RealDigits[1/x]; w[x_]:=First[r[x]]; f[x_]:=First[w[x]]; l[x_]:=Last[w[x]]; z[x_]:=Last[r[x]]; d[x_] := Which[IntegerQ[l[x]], 0, IntegerQ[f[x]]==False, Length[f[x]], True, Length[l[x]]]; Table[d[i], {i, 1, 90}] (* Hans Havermann, Oct 19 2006 *) fd[n_] := Block[{q}, q = Last[First[RealDigits[1/n]]]; If[IntegerQ[q], q = {}]; Length[q]]; Table[fd[n], {n, 100}] (* Ray Chandler, Dec 06 2006 *) Table[Length[RealDigits[1/n][[1, -1]]], {n, 90}] (* Harvey P. Dale, Jul 03 2011 *) PROG (PARI) A051626(n)=if(1

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 1 16:44 EST 2021. Contains 349430 sequences. (Running on oeis4.)