login
A113920
G.f.: (x^3 - x + 1)^3/(x^3*(1 - x)^3).
0
1, 0, 0, 3, 3, 3, 6, 9, 12, 16, 21, 27, 34, 42, 51, 61, 72, 84, 97, 111, 126, 142, 159, 177, 196, 216, 237, 259, 282, 306, 331, 357, 384, 412, 441, 471, 502, 534, 567, 601, 636, 672, 709, 747, 786, 826, 867, 909, 952, 996, 1041, 1087, 1134, 1182, 1231, 1281, 1332, 1384, 1437
OFFSET
-3,4
COMMENTS
Series expansion of elliptical invariant for a cubic anharmonic group. Suggested by the anharmonic group elliptical invariant A078907.
If Y is a 4-subset of an n-set X then, for n>=7, a(n-3) is the number of 2-subsets of X which do not have exactly one element in common with Y. - Milan Janjic, Dec 28 2007
REFERENCES
McKean and Moll, Elliptic Curves, 1997, Cambridge University Press, page 20.
FORMULA
a(n-7)=1/2*n^2-9/2*n+16, n=7,8,9,... - Milan Janjic, Dec 28 2007
MATHEMATICA
b = ReplacePart[Table[Coefficient[Series[(x^3 - x + 1)^3/(x^3*(1 - x)^3), {x, 0, 30}], x^n], {n, -3, 30}], 3, 4]
LinearRecurrence[{3, -3, 1}, {1, 0, 0, 3, 3, 3, 6, 9, 12, 16}, 60] (* Harvey P. Dale, Sep 29 2024 *)
CROSSREFS
Cf. A078907.
Sequence in context: A348224 A141094 A132972 * A081848 A079988 A212091
KEYWORD
nonn,easy
AUTHOR
Roger L. Bagula, Jan 29 2006
EXTENSIONS
Edited by N. J. A. Sloane, Apr 21 2007
STATUS
approved