The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A113922 G.f.: (1+14*x+x^2)^3/((1-x))^4. 1
 1, 46, 769, 5632, 18688, 44032, 85760, 147968, 234752, 350208, 498432, 683520, 909568, 1180672, 1500928, 1874432, 2305280, 2797568, 3355392, 3982848, 4684032, 5463040, 6323968, 7270912, 8307968, 9439232, 10668800, 12000768, 13439232, 14988288, 16652032 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Coefficient expansion of the elliptical invariant for the cube. REFERENCES Gareth Jones and David Singerman, Bull. London Math. Soc. 28, (1996) pages 561-590 (S_4 group invariant on page 585) H. McKean and V. Moll. Elliptic Curves, Camb. Univ. Press, p. 22. LINKS Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1). FORMULA a(n) = 256*(n-1)*(8*n^2 - 16*n + 9)/3 for n >= 3. - Emeric Deutsch, Apr 02 2006 MAPLE a:=proc(n) if n=0 then 1 elif n=1 then 46 elif n=2 then 769 else 256*(n-1)*(8*n^2-16*n+9)/3 fi end: seq(a(n), n=0..30); # Emeric Deutsch, Apr 02 2006 CROSSREFS Sequence in context: A078156 A341428 A066405 * A160067 A156842 A078427 Adjacent sequences:  A113919 A113920 A113921 * A113923 A113924 A113925 KEYWORD nonn,easy AUTHOR Roger L. Bagula, Jan 29 2006 EXTENSIONS Corrected, edited and extended by N. J. A. Sloane, Mar 31 2006, Aug 13 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 7 12:17 EST 2021. Contains 349581 sequences. (Running on oeis4.)