The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A141094 Expansion of b(q) / b(q^2) in powers of q where b() is a cubic AGM theta function. 6
 1, -3, 3, -3, 6, -9, 12, -15, 21, -30, 36, -45, 60, -78, 96, -117, 150, -189, 228, -276, 342, -420, 504, -603, 732, -885, 1050, -1245, 1488, -1773, 2088, -2454, 2901, -3420, 3996, -4662, 5460, -6378, 7404, -8583, 9972, -11565, 13344, -15378, 17748, -20448 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700). Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882). For n >= 1, a(n)/3 is a weighted count of overpartitions with restricted odd differences. Namely, the number of overpartitions of n counted with weight (-1)^(the largest part) and such that: (i) the difference between successive parts may be odd only if the larger part is overlined and (ii) the smallest part of the overpartition is odd and overlined. - Jeremy Lovejoy, Aug 07 2015 LINKS Alois P. Heinz, Table of n, a(n) for n = 0..10000 K. Bringmann, J. Dousse, J. Lovejoy, and K. Mahlburg, Overpartitions with restricted odd differences, Electron. J. Combin. 22 (2015), no.3, paper 3.17. Michael Somos, Introduction to Ramanujan theta functions Eric Weisstein's World of Mathematics, Ramanujan Theta Functions FORMULA Expansion of chi(-q)^3 / chi(-q^3) in powers of q where chi() is a Ramanujan theta function. Expansion of eta(q)^3 * eta(q^6) / (eta(q^2)^3 * eta(q^3)) in powers of q. Euler transform of period 6 sequence [ -3, 0, -2, 0, -3, 0, ...]. G.f.: Product_{k>0} (1 - x^(2*k-1))^3 / (1 - x^(6*k-3)). G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = v^2 - u * (2 - u*v). G.f. A(x) satisfies 0 = f(A(x), A(x^3)) where f(u, v) = u * (u^2 - 2*u + 4) - v^3 * (u^2 + u + 1). G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^3), A(x^6)) where f(u1, u2, u3, u6) = u1 * (u6^2 - u2 * u3) - u6 * (u3^2 - u6*u2). G.f. is a period 1 Fourier series which satisfies f(-1 / (18 t)) = 2 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A092848. a(n) = -3 * A124243(n) unless n=0. a(n) = (-1)^n * A132972(n). a(2*n) = A128128(n). a(2*n + 1) = - 3* A132302(n). Convolution inverse of A128128. Empirical: Sum_{n>=1} exp(-Pi)^(n-1)*(-1)^(n+1)*a(n) = (-2+2*3^(1/2))^(1/3). - Simon Plouffe, Feb 20 2011 a(n) ~ (-1)^n * exp(2*Pi*sqrt(n)/3) / (2*sqrt(3)*n^(3/4)). - Vaclav Kotesovec, Nov 16 2017 EXAMPLE G.f. = 1 - 3*q + 3*q^2 - 3*q^3 + 6*q^4 - 9*q^5 + 12*q^6 - 15*q^7 + 21*q^8 + ... MAPLE with(numtheory): a:= proc(n) option remember: `if`(n=0, 1, add(add(d*[0, -3, 0, -2, 0, -3] [irem(d, 6)+1], d=divisors(j))*a(n-j), j=1..n)/n) end: seq(a(n), n=0..60); # Alois P. Heinz, Aug 08 2015 MATHEMATICA a[ n_] := SeriesCoefficient[ QPochhammer[ x, x^2]^3 QPochhammer[ -x^3, x^3], {x, 0, n}]; (* Michael Somos, Sep 07 2015 *) a[n_] := a[n] = If[n==0, 1, Sum[Sum[d{0, -3, 0, -2, 0, -3}[[Mod[d, 6]+1]], {d, Divisors[j]}] a[n-j], {j, 1, n}]/n]; a /@ Range[0, 60] (* Jean-François Alcover, Jan 01 2021, after Alois P. Heinz *) PROG (PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^3 * eta(x^6 + A) / (eta(x^2 + A)^3 * eta(x^3 + A)), n))}; CROSSREFS Cf. A092848, A124243, A128128, A132302. Sequence in context: A124449 A262877 A348224 * A132972 A113920 A081848 Adjacent sequences: A141091 A141092 A141093 * A141095 A141096 A141097 KEYWORD sign AUTHOR Michael Somos, Jun 04 2008, Aug 12 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 1 05:02 EST 2022. Contains 358454 sequences. (Running on oeis4.)