The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A113749 Consider the generalized Mancala solitaire (A002491); to get n-th term, start with n and successively round up to next k multiples of n-1, n-2, ..., 1, for n>=1. Now construct the array, t, such that t(n,k) is the n-th and successively rounding up to the next k multiples. This sequence is the presentation of that array by reading the antidiagonals. 12
 1, 1, 1, 1, 2, 1, 1, 3, 4, 1, 1, 4, 7, 6, 1, 1, 5, 10, 13, 10, 1, 1, 6, 13, 18, 19, 12, 1, 1, 7, 16, 25, 30, 27, 18, 1, 1, 8, 19, 30, 39, 42, 39, 22, 1, 1, 9, 22, 37, 48, 61, 58, 49, 30, 1, 1, 10, 25, 42, 61, 72, 79, 78, 63, 34, 1, 1, 11, 28, 49, 70, 87, 102, 103, 102, 79, 42, 1, 1, 12, 31 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,5 COMMENTS The determinant of t(i,j), i=1..n, j=1..n, n=1..inf. is: 1,1,0,0,0,0, ...,. The determinant of t(i,j), i=1..n, j=-1..n-2, n=1..inf. is: 1,1,0,0,0,0, ...,. LINKS Michael De Vlieger, Table of n, a(n) for n = 1..11476 (rows n = 1..150, flattened) EXAMPLE 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...,. 1, 2, 4, 6, 10, 12, 18, 22, 30, 34, 42, 48, 58, 60, 78, ...,. 1, 3, 7, 13, 19, 27, 39, 49, 63, 79, 91, 109, 133, 147, 181, ...,. 1, 4, 10, 18, 30, 42, 58, 78, 102, 118, 150, 174, 210, 240, 274, ...,. 1, 5, 13, 25, 39, 61, 79, 103, 133, 169, 207, 241, 289, 331, 387, ...,. 1, 6, 16, 30, 48, 72, 102, 132, 168, 210, 258, 318, 360, 418, 492, ...,. 1, 7, 19, 37, 61, 87, 123, 163, 207, 253, 307, 373, 447, 511, 589, ...,. 1, 8, 22, 42, 70, 102, 142, 192, 240, 298, 360, 438, 510, 612, 708, ...,. 1, 9, 25, 49, 79, 121, 163, 219, 279, 349, 423, 507, 589, 687, 807, ...,. 1, 10, 28, 54, 90, 132, 180, 240, 318, 394, 480, 570, 672, 778, 898, ...,. 1, 11, 31, 61, 99, 147, 207, 271, 349, 439, 529, 643, 751, 867,1009, ...,. 1, 12, 34, 66, 108, 162, 228, 298, 382, 480, 588, 708, 838, 972,1114, ...,. MATHEMATICA f[n_, k_] := Fold[ #2*Ceiling[ #1/#2 + k] &, n, Reverse@Range[n - 1]]; Table[f[n - k + 1, k], {n, -1, 11}, {k, n, -1, -1}] // Flatten CROSSREFS Cf. {k=-1..12} A000012, A002491, A000960 (Flavius Josephus's sieve), A112557, A112558, A113742, A113743, A113744, A113745, A113746, A113747, A113748. Sequence in context: A151847 A349593 A179743 * A109225 A112564 A244911 Adjacent sequences: A113746 A113747 A113748 * A113750 A113751 A113752 KEYWORD nonn,tabl AUTHOR Paul D. Hanna and Robert G. Wilson v, Nov 05 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 5 02:12 EST 2023. Contains 360082 sequences. (Running on oeis4.)