login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A113749 Consider the generalized Mancala solitaire (A002491); to get n-th term, start with n and successively round up to next k multiples of n-1, n-2, ..., 1, for n>=1. Now construct the array, t, such that t(n,k) is the n-th and successively rounding up to the next k multiples. This sequence is the presentation of that array by reading the antidiagonals. 12
1, 1, 1, 1, 2, 1, 1, 3, 4, 1, 1, 4, 7, 6, 1, 1, 5, 10, 13, 10, 1, 1, 6, 13, 18, 19, 12, 1, 1, 7, 16, 25, 30, 27, 18, 1, 1, 8, 19, 30, 39, 42, 39, 22, 1, 1, 9, 22, 37, 48, 61, 58, 49, 30, 1, 1, 10, 25, 42, 61, 72, 79, 78, 63, 34, 1, 1, 11, 28, 49, 70, 87, 102, 103, 102, 79, 42, 1, 1, 12, 31 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,5

COMMENTS

The determinant of t(i,j), i=1..n, j=1..n, n=1..inf. is: 1,1,0,0,0,0, ...,.

The determinant of t(i,j), i=1..n, j=-1..n-2, n=1..inf. is: 1,1,0,0,0,0, ...,.

LINKS

Table of n, a(n) for n=1..81.

EXAMPLE

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...,.

1, 2, 4, 6, 10, 12, 18, 22, 30, 34, 42, 48, 58, 60, 78, ...,.

1, 3, 7, 13, 19, 27, 39, 49, 63, 79, 91, 109, 133, 147, 181, ...,.

1, 4, 10, 18, 30, 42, 58, 78, 102, 118, 150, 174, 210, 240, 274, ...,.

1, 5, 13, 25, 39, 61, 79, 103, 133, 169, 207, 241, 289, 331, 387, ...,.

1, 6, 16, 30, 48, 72, 102, 132, 168, 210, 258, 318, 360, 418, 492, ...,.

1, 7, 19, 37, 61, 87, 123, 163, 207, 253, 307, 373, 447, 511, 589, ...,.

1, 8, 22, 42, 70, 102, 142, 192, 240, 298, 360, 438, 510, 612, 708, ...,.

1, 9, 25, 49, 79, 121, 163, 219, 279, 349, 423, 507, 589, 687, 807, ...,.

1, 10, 28, 54, 90, 132, 180, 240, 318, 394, 480, 570, 672, 778, 898, ...,.

1, 11, 31, 61, 99, 147, 207, 271, 349, 439, 529, 643, 751, 867,1009, ...,.

1, 12, 34, 66, 108, 162, 228, 298, 382, 480, 588, 708, 838, 972,1114, ...,.

MATHEMATICA

f[n_, k_] := Fold[ #2*Ceiling[ #1/#2 + k] &, n, Reverse@Range[n - 1]]; Table[f[n - k + 1, k], {n, -1, 11}, {k, n, -1, -1}] // Flatten

CROSSREFS

Cf. {k=-1..12} A000012, A002491, A000960 (Flavius Josephus's sieve), A112557, A112558, A113742, A113743, A113744, A113745, A113746, A113747, A113748; det. A113749.

Sequence in context: A120013 A151847 A179743 * A109225 A112564 A244911

Adjacent sequences:  A113746 A113747 A113748 * A113750 A113751 A113752

KEYWORD

nonn

AUTHOR

Paul D. Hanna and Robert G. Wilson v, Nov 05 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 22 09:52 EST 2019. Contains 319363 sequences. (Running on oeis4.)