login
A112558
Generalized Mancala solitaire (A002491); to get n-th term, start with n and successively round up to next 4 multiples of n-1, n-2, ..., 1, for n>=1.
11
1, 5, 13, 25, 39, 61, 79, 103, 133, 169, 207, 241, 289, 331, 387, 447, 481, 553, 613, 687, 763, 819, 927, 979, 1093, 1179, 1261, 1347, 1471, 1539, 1693, 1759, 1899, 2019, 2161, 2263, 2367, 2527, 2703, 2779, 2967, 3073, 3199, 3373, 3529, 3691, 3841, 3987, 4203
OFFSET
1,2
FORMULA
a(2*n-1) = A000960(3*n-2), where A000960 is Flavius Josephus's sieve.
EXAMPLE
a(1)=1: 1;
a(2)=5: 2->5;
a(3)=13: 3->10->13;
a(4)=25: 4->15->22->25;
a(5)=39: 5->20->30->36->39;
a(6)=61: 6->25->40->51->58->61;
a(7)=79: 7->30->45->60->69->76->79;
a(8)=103: 8->35->54->70->84->93->100->103;
a(9)=133: 9->40->63->84->100->112->123->130->133;
a(10)=169: 10->45->72->98->120->135->148->159->166->169.
MATHEMATICA
f[n_] := Fold[#2*Ceiling[#1/#2 + 3] &, n, Reverse@ Range[n - 1]]; Array[f, 49]
PROG
(PARI) a(n)=local(A=n, D); for(i=1, n-1, D=n-i; A=D*ceil(A/D+3)); A
CROSSREFS
Sequence in context: A094553 A094079 A194811 * A248160 A098972 A081961
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 12 2005
STATUS
approved