login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A248160 Expansion of (1 - 2*x^2)/(1 + x)^5. Fourth column of Riordan triangle A248156. 2
1, -5, 13, -25, 40, -56, 70, -78, 75, -55, 11, 65, -182, 350, -580, 884, -1275, 1767, -2375, 3115, -4004, 5060, -6302, 7750, -9425, 11349, -13545, 16037, -18850, 22010, -25544, 29480, -33847, 38675, -43995, 49839, -56240, 63232, -70850, 79130, -88109, 97825, -108317, 119625, -131790 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

This is the column k=3 sequence of the Riordan triangle A248156 without the leading three zeros.

LINKS

Table of n, a(n) for n=0..44.

Index entries for linear recurrences with constant coefficients, signature (-5,-10,-10,-5,-1).

FORMULA

O.g.f.: (1 - 2*x^2)/(1 + x)^5 = -2/(1 + x)^3 + 4/(1 + x)^4 - 1/(1 + x)^5.

a(n) = (-1)^n*(n+1)*(n+2)*(12 + 9*n - n^2)/4!.

a(n) =  -5*(a(n-1) + a(n-4)) - 10*(a(n-2) + a(n-3)) - a(n-5), n >= 5, with a(0) =1, a(1) = -5, a(2) = 13, a(3) = -25 and a(4) = 40.

MAPLE

A248160:=n->(-1)^n*(n+1)*(n+2)*(12 + 9*n - n^2)/4!: seq(A248160(n), n=0..30); # Wesley Ivan Hurt, Oct 09 2014

MATHEMATICA

Table[(-1)^n*(n + 1)*(n + 2)*(12 + 9*n - n^2)/4!, {n, 0, 30}] (* Wesley Ivan Hurt, Oct 09 2014 *)

CoefficientList[Series[(1-2x^2)/(1+x)^5, {x, 0, 50}], x] (* or *) LinearRecurrence[ {-5, -10, -10, -5, -1}, {1, -5, 13, -25, 40}, 50] (* Harvey P. Dale, Apr 13 2019 *)

PROG

(PARI) Vec((1 - 2*x^2)/(1 + x)^5 + O(x^50)) \\ Michel Marcus, Oct 09 2014

CROSSREFS

Cf. A248156, A248157 (k=0), A248158 (k=1), A248159 (k=2).

Sequence in context: A094079 A194811 A112558 * A098972 A081961 A096891

Adjacent sequences:  A248157 A248158 A248159 * A248161 A248162 A248163

KEYWORD

sign,easy

AUTHOR

Wolfdieter Lang, Oct 09 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 19 02:41 EDT 2019. Contains 328211 sequences. (Running on oeis4.)