login
A113750
Consider the generalized Mancala solitaire (A002491); to get n-th term, start with n and successively round up to next k multiples of n-1, n-2, ..., 1, for n>=1. Now construct the array, t, such that t(n,k) is the n-th and successively rounding up to the next k multiples. This sequence is the determinant of that array.
0
2, 2, -4, 0, -32, -256, -512, -5632, -180736, -135168, -61440, 5529600, -1554161664, 17735712768, 351786369024, -79390588010496, -1755801711804416, -30318369806745600, -4162409018839531520, 528913148312239996928
OFFSET
2,1
MATHEMATICA
f[n_, k_] := Fold[ #2*Ceiling[ #1/#2 + k] &, n, Reverse@Range[n - 1]]; Table[Det[Table[f[i, j], {i, 2, n}, {j, 0, n - 2}]], {n, 2, 21}]
CROSSREFS
Sequence in context: A360603 A337299 A240491 * A355204 A282627 A004565
KEYWORD
sign
AUTHOR
STATUS
approved