

A113288


Matrix inverse of triangle A113287.


4



1, 2, 1, 3, 0, 1, 8, 4, 4, 1, 15, 10, 10, 0, 1, 36, 30, 36, 12, 6, 1, 77, 70, 91, 42, 21, 0, 1, 192, 184, 256, 152, 96, 24, 8, 1, 459, 450, 648, 432, 306, 108, 36, 0, 1, 1220, 1210, 1780, 1280, 1000, 460, 200, 40, 10, 1, 3201, 3190, 4741, 3542, 2926, 1540, 770, 220, 55, 0, 1
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


LINKS

Table of n, a(n) for n=0..65.


FORMULA

T(n, 0) = (1)^n*(n+1)*A072374(n1) for n>=2, with T(1, 0)=2, T(n, n)=1. T(n, 1) = (1)^n*(n+1)*(A072374(n1)  1) for n>=2.


EXAMPLE

Triangle begins:
.1;
.2,1;
.3,0,1;
.8,4,4,1;
.15,10,10,0,1;
.36,30,36,12,6,1;
.77,70,91,42,21,0,1;
.192,184,256,152,96,24,8,1;
.459,450,648,432,306,108,36,0,1;
.1220,1210,1780,1280,1000,460,200,40,10,1;
.3201,3190,4741,3542,2926,1540,770,220,55,0,1; ...


PROG

(PARI) {T(n, k)=local(x=X+O(X^(n+2)), y=Y+O(Y^(n+2)), M=matrix(n+1, n+1, r, c, polcoeff(polcoeff(1/(1x*y)+r*x/((1x*y)*(1+x+x*y)), r1, X), c1, Y))); if(n<k, 0, (M^1)[n+1, k+1])}


CROSSREFS

Cf. A113287, A113289 (row sums), A113290 (log), A072374.
Sequence in context: A168021 A137639 A239631 * A199580 A035215 A147654
Adjacent sequences: A113285 A113286 A113287 * A113289 A113290 A113291


KEYWORD

sign,tabl


AUTHOR

Paul D. Hanna, Oct 23 2005


STATUS

approved



