login
A113288
Matrix inverse of triangle A113287.
4
1, -2, 1, 3, 0, 1, -8, -4, -4, 1, 15, 10, 10, 0, 1, -36, -30, -36, -12, -6, 1, 77, 70, 91, 42, 21, 0, 1, -192, -184, -256, -152, -96, -24, -8, 1, 459, 450, 648, 432, 306, 108, 36, 0, 1, -1220, -1210, -1780, -1280, -1000, -460, -200, -40, -10, 1, 3201, 3190, 4741, 3542, 2926, 1540, 770, 220, 55, 0, 1
OFFSET
0,2
FORMULA
T(n, 0) = (-1)^n*(n+1)*A072374(n-1) for n>=2, with T(1, 0)=-2, T(n, n)=1. T(n, 1) = (-1)^n*(n+1)*(A072374(n-1) - 1) for n>=2.
EXAMPLE
Triangle begins:
.1;
.-2,1;
.3,0,1;
.-8,-4,-4,1;
.15,10,10,0,1;
.-36,-30,-36,-12,-6,1;
.77,70,91,42,21,0,1;
.-192,-184,-256,-152,-96,-24,-8,1;
.459,450,648,432,306,108,36,0,1;
.-1220,-1210,-1780,-1280,-1000,-460,-200,-40,-10,1;
.3201,3190,4741,3542,2926,1540,770,220,55,0,1; ...
PROG
(PARI) {T(n, k)=local(x=X+O(X^(n+2)), y=Y+O(Y^(n+2)), M=matrix(n+1, n+1, r, c, polcoeff(polcoeff(1/(1-x*y)+r*x/((1-x*y)*(1+x+x*y)), r-1, X), c-1, Y))); if(n<k, 0, (M^-1)[n+1, k+1])}
CROSSREFS
Cf. A113287, A113289 (row sums), A113290 (-log), A072374.
Sequence in context: A168021 A137639 A239631 * A199580 A035215 A147654
KEYWORD
sign,tabl
AUTHOR
Paul D. Hanna, Oct 23 2005
STATUS
approved