This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A072374 a(1) = 1; a(n) = 1 + Sum_{i=1..n} Product_{j=i..2*i-1} (n-j). 7
 1, 2, 3, 6, 11, 24, 51, 122, 291, 756, 1979, 5526, 15627, 46496, 140451, 442194, 1414931, 4687212, 15785451, 54764846, 193129659, 698978136, 2570480147, 9672977706, 36967490691, 144232455524, 571177352091, 2304843053382, 9434493132011, 39289892366736 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS A122852 is another version of the same sequence. - R. J. Mathar, Jun 18 2008 LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..200 FORMULA The sequence 1, 1, 2, 3, .. has a(n)=sum{k=0..floor(n/2), C(n-k, k)k!} (diagonal sums of permutation triangle A008279). - Paul Barry, May 12 2004 Recurrence: 2*a(n) = 3*a(n-1) + (n-1)*a(n-2) - (n-1)*a(n-3). - Vaclav Kotesovec, Feb 08 2014 a(n) ~ sqrt(Pi) * exp(sqrt(n/2) - n/2 + 1/8) * n^((n+1)/2) / 2^(n/2+1) * (1 + 37/(48*sqrt(2*n))). - Vaclav Kotesovec, Feb 08 2014 MATHEMATICA Table[Sum[Binomial[n-k, k]*k!, {k, 0, Floor[n/2]}], {n, 1, 20}] (* Vaclav Kotesovec, Feb 08 2014 *) CROSSREFS Sequence in context: A036648 A047750 A072187 * A122852 A192573 A284994 Adjacent sequences:  A072371 A072372 A072373 * A072375 A072376 A072377 KEYWORD nonn AUTHOR N. J. A. Sloane, Jul 19 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 9 17:18 EST 2019. Contains 329879 sequences. (Running on oeis4.)