OFFSET
1,1
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..10000
FORMULA
From Vaclav Kotesovec, Oct 13 2024: (Start)
a(3*k*(k+3)/2) = 3*k*(k+1)*(k+2)*(8*k^2+21*k+31)/40.
a(n) ~ 2^(5/2)*n^(5/2)/(5*3^(3/2)) - n^2/2 + 13*n^(3/2)/(2^(3/2)*sqrt(3)). (End)
MATHEMATICA
Accumulate[Select[Range[300], !IntegerQ[Surd[#, 3]]&&Divisible[#, Floor[ Surd[ #, 3]]]&]] (* Harvey P. Dale, May 13 2020 *)
PROG
(Magma)
A032378:=[k*j: j in [(k^2+1)..(k^2+3*k+3)], k in [1..15]];
[(&+[A032378[j]: j in [1..n]]): n in [1..100]]; // G. C. Greubel, Jul 20 2023
(SageMath)
A032378=flatten([[k*j for j in range((k^2+1), (k^2+3*k+3)+1)] for k in range(1, 15)])
[A112873(n) for n in range(101)] # G. C. Greubel, Jul 20 2023
(Python)
from itertools import count, islice, accumulate
from sympy import integer_nthroot
def A112873_gen(): # generator of terms
return accumulate(filter(lambda x: not x%integer_nthroot(x, 3)[0], (n+(k:=integer_nthroot(n, 3)[0])+int(n>=(k+1)**3-k) for n in count(1))))
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Oct 29 2006
STATUS
approved