login
A112873
Partial sums of A032378.
6
2, 5, 9, 14, 20, 27, 37, 49, 63, 79, 97, 117, 139, 163, 189, 219, 252, 288, 327, 369, 414, 462, 513, 567, 624, 684, 747, 815, 887, 963, 1043, 1127, 1215, 1307, 1403, 1503, 1607, 1715, 1827, 1943, 2063, 2187, 2317, 2452, 2592, 2737, 2887, 3042, 3202, 3367, 3537
OFFSET
1,1
LINKS
FORMULA
From Vaclav Kotesovec, Oct 13 2024: (Start)
a(3*k*(k+3)/2) = 3*k*(k+1)*(k+2)*(8*k^2+21*k+31)/40.
a(n) ~ 2^(5/2)*n^(5/2)/(5*3^(3/2)) - n^2/2 + 13*n^(3/2)/(2^(3/2)*sqrt(3)). (End)
MATHEMATICA
Accumulate[Select[Range[300], !IntegerQ[Surd[#, 3]]&&Divisible[#, Floor[ Surd[ #, 3]]]&]] (* Harvey P. Dale, May 13 2020 *)
PROG
(Magma)
A032378:=[k*j: j in [(k^2+1)..(k^2+3*k+3)], k in [1..15]];
[(&+[A032378[j]: j in [1..n]]): n in [1..100]]; // G. C. Greubel, Jul 20 2023
(SageMath)
A032378=flatten([[k*j for j in range((k^2+1), (k^2+3*k+3)+1)] for k in range(1, 15)])
def A112873(n): return sum(A032378[j] for j in range(n+1))
[A112873(n) for n in range(101)] # G. C. Greubel, Jul 20 2023
(Python)
from itertools import count, islice, accumulate
from sympy import integer_nthroot
def A112873_gen(): # generator of terms
return accumulate(filter(lambda x: not x%integer_nthroot(x, 3)[0], (n+(k:=integer_nthroot(n, 3)[0])+int(n>=(k+1)**3-k) for n in count(1))))
A112873_list = list(islice(A112873_gen(), 40)) # Chai Wah Wu, Oct 12 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Oct 29 2006
STATUS
approved