login
A112870
Positive integers sorted by rote height and primal code characteristic.
2
1, 2, 6, 9, 12, 18, 36, 3, 4
OFFSET
1,2
COMMENTS
Positive integers m sorted by h(m) = A109301(m) and q(m) = A108352(m).
Using "quench" as a shorter substitute for "primal code characteristic", the rote corresponding to the positive integer m has a quench of q(m) = A108352(m). Numbers with primal code characteristic 0 are "unquenchable".
EXAMPLE
Primal Function | Primal Code = a | h q | s | t
----------------+-----------------+-----+---+---
{ } ` ` ` ` ` ` | ` ` ` ` ` ` ` 1 | 0 1 | 1 | 1
----------------+-----------------+-----+---+---
1:1 ` ` ` ` ` ` | ` ` ` ` ` ` ` 2 | 1 0 | 1 | 1
----------------+-----------------+-----+---+---
1:1 2:1 ` ` ` ` | ` ` ` ` ` ` ` 6 | 2 0 | ` |
2:2 ` ` ` ` ` ` | ` ` ` ` ` ` ` 9 | 2 0 | ` |
1:2 2:1 ` ` ` ` | ` ` ` ` ` ` `12 | 2 0 | ` |
1:1 2:2 ` ` ` ` | ` ` ` ` ` ` `18 | 2 0 | ` |
1:2 2:2 ` ` ` ` | ` ` ` ` ` ` `36 | 2 0 | 5 |
----------------+-----------------+-----+---+---
2:1 ` ` ` ` ` ` | ` ` ` ` ` ` ` 3 | 2 2 | ` |
1:2 ` ` ` ` ` ` | ` ` ` ` ` ` ` 4 | 2 2 | 2 | 7
----------------+-----------------+-----+---+---
a = this sequence
h = rote height in gammas = A109301
q = primal code character = A108352
s = count in (h, q) class = A112871
t = count in height class = A109300
KEYWORD
nonn,tabf
AUTHOR
Jon Awbrey, Oct 14 2005
STATUS
approved