login
A111912
Expansion of x*(2 +3*x +x^2 -2*x^5 -x^7 -x^8)/((1-x)*(1+x)*(1-x^4+x^8)).
4
0, 2, 3, 3, 3, 5, 4, 6, 3, 5, 1, 5, 0, 2, -3, 1, -3, -1, -4, -2, -3, -1, -1, -1, 0, 2, 3, 3, 3, 5, 4, 6, 3, 5, 1, 5, 0, 2, -3, 1, -3, -1, -4, -2, -3, -1, -1, -1, 0, 2, 3, 3, 3, 5, 4, 6, 3, 5, 1, 5, 0, 2, -3, 1, -3, -1, -4, -2, -3, -1, -1, -1
OFFSET
0,2
COMMENTS
Sequence has period 24.
MAPLE
seq(coeff(series((x*(-2-3*x-x^2+2*x^5+x^7+x^8)/((x-1)*(x+1)*(x^8-x^4+1))), x, n+1), x, n), n=0..75); # Muniru A Asiru, Jun 06 2018
MATHEMATICA
LinearRecurrence[{0, 1, 0, 1, 0, -1, 0, -1, 0, 1}, {0, 2, 3, 3, 3, 5, 4, 6, 3, 5}, 75] (* G. C. Greubel, Feb 12 2021 *)
PROG
(PARI) Vec(x*(-2-3*x-x^2+2*x^5+x^7+x^8)/((x-1)*(x+1)*(x^8-x^4+1))+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012
(Sage)
def A111912_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( x*(2+3*x+x^2-2*x^5-x^7-x^8)/((1-x)*(1+x)*(1-x^4+x^8)) ).list()
A111912_list(75) # G. C. Greubel, Feb 12 2021
(Magma)
R<x>:=PowerSeriesRing(Integers(), 75);
Coefficients(R!( x*(2+3*x+x^2-2*x^5-x^7-x^8)/((1-x)*(1+x)*(1-x^4+x^8)) )); // G. C. Greubel, Feb 12 2021
CROSSREFS
KEYWORD
sign,easy,less
AUTHOR
Creighton Dement, Aug 20 2005
STATUS
approved