OFFSET
1,1
COMMENTS
Equivalently, the root of x^(x+1) = (x+1)^x.
Also a root of 1/(x^(1/x)-1) - x = 0 and 1/(x^(1/x)-1/x-1) - x = 0, which also contains the root 5.50798565277317825758902... 1/(x^(1/x)-1) ~ Pi(x) and 1/(x^(1/x)-1/x-1) ~ Pi(x), which is a much better approximation. These roots also can be computed by the recurrences x = 1/(x^(1/x)-1) and x = 1/(x^(1/x)-1/x-1). - Cino Hilliard, Sep 13 2008
This constant is transcendental (Lord, 2002). - Amiram Eldar, Oct 29 2022
LINKS
Nicolae Anghel, Foias Numbers, An. Sţiinţ. Univ. Ovidius Constanţa. Mat. (The Journal of Ovidius University of Constanţa, 2018) 26(3), 21-28.
Nick Lord, Two Other Transcendental Numbers Obtained by (Mis)calculating e, The Mathematical Gazette, Vol. 86, No. 505 (2002), pp. 103-105.
Eric Weisstein's World of Mathematics, Foias Constant.
FORMULA
x satisfies x^(1/x) = (x+1)^(1/(x+1)). - Marco Matosic, Nov 25 2005
EXAMPLE
2.2931662874118610315080282912508058643722572903271212485377103961...
MATHEMATICA
RealDigits[ FindRoot[x^(1/x) - (x + 1)^(1/(x + 1)) == 0, {x, 2}, WorkingPrecision -> 128][[1, 2]], 10, 111][[1]] (* Robert G. Wilson v *)
PROG
(PARI) solve(x=2, 3, (1+1/x)^x-x) \\ Charles R Greathouse IV, Apr 14 2014
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Eric W. Weisstein, Jul 05 2003
STATUS
approved