login
A271524
Decimal expansion of the imaginary part of the Dirichlet function eta(z), at z=i, the imaginary unit.
4
2, 2, 9, 3, 8, 4, 8, 5, 7, 7, 2, 8, 5, 2, 5, 8, 9, 2, 4, 5, 7, 8, 8, 6, 7, 3, 3, 5, 5, 8, 0, 8, 1, 9, 3, 8, 2, 2, 5, 1, 9, 5, 4, 1, 5, 2, 6, 6, 1, 2, 1, 0, 3, 4, 6, 2, 5, 0, 7, 2, 3, 9, 3, 6, 7, 2, 9, 1, 8, 3, 5, 1, 4, 8, 9, 5, 9, 7, 5, 6, 2, 6, 4, 4, 6, 3, 6, 4, 4, 4, 7, 3, 7, 4, 1, 7, 6, 5, 5, 4, 8, 4, 2, 9, 5
OFFSET
0,1
COMMENTS
The corresponding real part of eta(i) is in A271523.
LINKS
Eric Weisstein's World of Mathematics, Dirichlet Eta Function
FORMULA
Equals imag(eta(i)).
EXAMPLE
0.229384857728525892457886733558081938225195415266121034625072393...
MATHEMATICA
First[RealDigits[Im[(1 - 2^(1 - I))*Zeta[I]], 10, 110]] (* Robert Price, Apr 09 2016 *)
PROG
(PARI) \\ The Dirichlet eta function (fails for z=1):
direta(z)=(1-2^(1-z))*zeta(z);
imag(direta(I))\\ Evaluation
CROSSREFS
Cf. A002162 (eta(1)), A179311 (real(zeta(i))), A179836 (imag(-zeta(i))), A271523 (real(eta(i))), A271525 (real(eta'(i))), A271526(-imag(eta'(i))).
Sequence in context: A085846 A374169 A021440 * A157216 A020776 A021002
KEYWORD
nonn,cons
AUTHOR
Stanislav Sykora, Apr 09 2016
STATUS
approved