This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A110625 Numerator of b(n) = -Sum(k=1 to n, A037861(k)/((2k)(2k+1))), where A037861(k) = (number of 0's) - (number of 1's) in binary representation of k. 5
 1, 1, 3, 101, 5807, 77801, 82949, 170636, 170636, 170636, 363113, 363113, 84848, 710567, 22435781, 3901243741, 27210449083, 1003538672911, 248595095590537, 10165684261926701, 438167567023512863, 439119040574907047 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS Numerators of partial sums of a series for the "alternating Euler constant" log(4/Pi) (see A094640 and Sondow 2005, 2010). Denominators are A110626. LINKS J. Sondow, Double integrals for Euler's constant and ln(4/Pi) and an analog of Hadjicostas's formula, Amer. Math. Monthly 112 (2005) 61-65. J. Sondow, New Vacca-Type Rational Series for Euler's Constant and Its "Alternating" Analog ln(4/Pi), Additive Number Theory, Festschrift In Honor of the Sixtieth Birthday of Melvyn B. Nathanson (D. Chudnovsky and G. Chudnovsky, eds.), Springer, 2010, pp. 331-340. FORMULA lim(n -> infinity, b(n)) = log 4/Pi = 0.24156... EXAMPLE a(3) = 3 because b(3) = 1/6 + 0 + 1/21 = 3/14. CROSSREFS Cf. A037861, A073099, A094640, A110626. Sequence in context: A037114 A069457 A142416 * A108220 A130733 A037062 Adjacent sequences:  A110622 A110623 A110624 * A110626 A110627 A110628 KEYWORD easy,frac,nonn AUTHOR Jonathan Sondow, Aug 01 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 13 20:57 EST 2019. Contains 329106 sequences. (Running on oeis4.)