This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A110628 Trisection of A083953 such that the self-convolution cube is congruent modulo 9 to A083953, which consists entirely of 1's, 2's and 3's. 1
 1, 1, 3, 3, 1, 2, 2, 1, 2, 3, 2, 3, 3, 2, 2, 3, 2, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 3, 1, 3, 1, 2, 1, 3, 1, 3, 1, 1, 1, 2, 2, 3, 3, 2, 3, 1, 2, 1, 3, 3, 2, 3, 3, 1, 2, 3, 3, 1, 3, 3, 2, 2, 2, 1, 2, 3, 3, 3, 3, 1, 2, 2, 3, 2, 1, 2, 2, 1, 2, 3, 3, 2, 2, 1, 1, 2, 1, 3, 2, 2, 2, 1, 3, 2, 2, 3, 3, 2, 3, 1, 1, 1, 1, 3, 3 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Congruent modulo 3 to A084203 and A104405; the self-convolution cube of A084203 equals A083953. LINKS FORMULA a(n) = A083953(3*n) for n>=0. G.f. satisfies: A(x^3) = G(x) - 3*x*(1+x)/(1-x^3), where G(x) is the g.f. of A083953. G.f. satisfies: A(x)^3 = A(x^3) + 3*x*(1+x)/(1-x^3) + 9*x^2*H(x) where H(x) is the g.f. of A111582. PROG (PARI) {a(n)=local(p=3, A, C, X=x+x*O(x^(p*n))); if(n==0, 1, A=sum(i=0, n-1, a(i)*x^(p*i))+p*x*((1-x^(p-1))/(1-X))/(1-X^p); for(k=1, p, C=polcoeff((A+k*x^(p*n))^(1/p), p*n); if(denominator(C)==1, return(k); break)))} CROSSREFS Cf. A083953, A111582, A084203, A104405. Sequence in context: A073067 A003637 A317413 * A107292 A225331 A004550 Adjacent sequences:  A110625 A110626 A110627 * A110629 A110630 A110631 KEYWORD nonn AUTHOR Robert G. Wilson v and Paul D. Hanna, Aug 08 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 12 17:33 EST 2019. Contains 329960 sequences. (Running on oeis4.)