|
|
A110310
|
|
Expansion of (1-x+x^2)/((x^2+x+1)*(x^2+5*x+1)).
|
|
5
|
|
|
1, -7, 36, -173, 827, -3960, 18973, -90907, 435564, -2086913, 9998999, -47908080, 229541401, -1099798927, 5269453236, -25247467253, 120967883027, -579591947880, 2776991856373, -13305367333987, 63749844813564, -305443856733833, 1463469438855599, -7011903337544160
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
Colin Barker, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (-6,-7,-6,-1).
|
|
FORMULA
|
a(n+2) = - 5*a(n+1) - a(n) - ((-1)^n)*A109265(n+3).
a(n) = -6*a(n-1) - 7*a(n-2) - 6*a(n-3) - a(n-4) for n>3. - Colin Barker, Apr 30 2019
|
|
MAPLE
|
seriestolist(series((1-x+x^2)/((x^2+x+1)*(x^2+5*x+1)), x=0, 25)); -or- Floretion Algebra Multiplication Program, FAMP Code: 1basejseq[A*B] with A = - 'j + 'k - j' + k' - 'ii' - 'ij' - 'ik' - 'ji' - 'ki' and B = + .5'i + .5'ii' + .5'ij' + .5'ik'
|
|
PROG
|
(PARI) Vec((1 - x + x^2) / ((1 + x + x^2)*(1 + 5*x + x^2)) + O(x^25)) \\ Colin Barker, Apr 30 2019
|
|
CROSSREFS
|
Cf. A110307, A110308, A110309, A110311.
Sequence in context: A102053 A058681 A246417 * A054493 A037538 A037482
Adjacent sequences: A110307 A110308 A110309 * A110311 A110312 A110313
|
|
KEYWORD
|
easy,sign
|
|
AUTHOR
|
Creighton Dement, Jul 19 2005
|
|
STATUS
|
approved
|
|
|
|