|
|
A110308
|
|
Expansion of -x*(2+x)/((x^2+x+1)*(x^2+5*x+1)).
|
|
5
|
|
|
0, -2, 11, -52, 247, -1182, 5664, -27140, 130037, -623044, 2985181, -14302860, 68529120, -328342742, 1573184591, -7537580212, 36114716467, -173036002122, 829065294144, -3972290468600, 19032387048857, -91189644775684, 436915836829561, -2093389539372120
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
Colin Barker, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (-6,-7,-6,-1).
|
|
FORMULA
|
a(n+2) = - 5*a(n+1) - a(n) - A099837(n+2).
a(n) = -6*a(n-1) - 7*a(n-2) - 6*a(n-3) - a(n-4) for n>3. - Colin Barker, Apr 30 2019
|
|
MAPLE
|
seriestolist(series(-x*(2+x)/((x^2+x+1)*(x^2+5*x+1)), x=0, 25)); -or- Floretion Algebra Multiplication Program, FAMP Code: 1kbaseseq[A*B] with A = - 'j + 'k - j' + k' - 'ii' - 'ij' - 'ik' - 'ji' - 'ki' and B = + .5'i + .5'ii' + .5'ij' + .5'ik'
|
|
PROG
|
(PARI) concat(0, Vec(-x*(2 + x) / ((1 + x + x^2)*(1 + 5*x + x^2)) + O(x^25))) \\ Colin Barker, Apr 30 2019
|
|
CROSSREFS
|
Cf. A110307, A110309, A110310.
Sequence in context: A026986 A181290 A026996 * A027201 A026933 A052171
Adjacent sequences: A110305 A110306 A110307 * A110309 A110310 A110311
|
|
KEYWORD
|
easy,sign
|
|
AUTHOR
|
Creighton Dement, Jul 19 2005
|
|
STATUS
|
approved
|
|
|
|