login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A110294 a(2*n) = A028230(n), a(2*n+1) = -A067900(n+1). 2
1, -8, 15, -112, 209, -1560, 2911, -21728, 40545, -302632, 564719, -4215120, 7865521, -58709048, 109552575, -817711552, 1525870529, -11389252680, 21252634831, -158631825968, 296011017105, -2209456310872, 4122901604639, -30773756526240, 57424611447841 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

See A110293.

LINKS

Colin Barker, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (0,14,0,-1).

FORMULA

G.f.: (1-8*x+x^2) / ((x^2-4*x+1)*(x^2+4*x+1)).

a(n) = 14*a(n-2)-a(n-4) for n>3. - Colin Barker, Nov 01 2016

MAPLE

seriestolist(series((1-8*x+x^2)/((x^2-4*x+1)*(x^2+4*x+1)), x=0, 25));

# -or- Floretion Algebra Multiplication Program, FAMP Code: 1jeszapseq[A*B] with A = - 'j + 'k - j' + k' - 'ii' - 'ij' - 'ik' - 'ji' - 'ki' and B = + .5'ij' + .5'ji'

MATHEMATICA

CoefficientList[Series[(1 - 8 x + x^2)/((x^2 - 4 x + 1) (x^2 + 4 x + 1)), {x, 0, 24}], x] (* Michael De Vlieger, Nov 01 2016 *)

PROG

(PARI) Vec((1-8*x+x^2)/((1-4*x+x^2)*(1+4*x+x^2)) + O(x^30)) \\ Colin Barker, Nov 01 2016

CROSSREFS

Cf. A001570, A011943, A110293.

Sequence in context: A177199 A177165 A189003 * A110459 A132374 A234534

Adjacent sequences:  A110291 A110292 A110293 * A110295 A110296 A110297

KEYWORD

easy,sign

AUTHOR

Creighton Dement, Jul 18 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified March 25 08:59 EDT 2017. Contains 284060 sequences.