login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A189003 Number of domino tilings of the 5 X n grid with upper left corner removed iff n is odd. 3
1, 1, 8, 15, 95, 192, 1183, 2415, 14824, 30305, 185921, 380160, 2332097, 4768673, 29253160, 59817135, 366944287, 750331584, 4602858719, 9411975375, 57737128904, 118061508289, 724240365697, 1480934568960, 9084693297025, 18576479568193, 113956161827912 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..550

Index entries for linear recurrences with constant coefficients, signature (0,15,0,-32,0,15,0,-1).

FORMULA

G.f.: (x-1)*(1+x)*(x^4+x^3-6*x^2+x+1) / (-x^8+15*x^6-32*x^4+15*x^2-1).

MAPLE

a:= n-> (<<0|1|0|0>, <0|0|1|0>, <0|0|0|1>, <-1|15|-32|15>>^iquo(n, 2, 'r').

        `if`(r=0, <<8, 1, 1, 8>>, <<1, 0, 1, 15>>))[3, 1]:

seq(a(n), n=0..30);

MATHEMATICA

a[n_] := Product[2(2+Cos[2 j Pi/(n+1)]+Cos[k Pi/3]), {k, 1, 2}, {j, 1, n/2} ] // Round;

Table[a[n], {n, 0, 24}] (* Jean-François Alcover, Aug 19 2018, after A099390 *)

CROSSREFS

5th row of array A189006.

Bisections give: A003775 (even part), A006238 (odd part).

Sequence in context: A275246 A177199 A177165 * A110294 A110459 A132374

Adjacent sequences:  A189000 A189001 A189002 * A189004 A189005 A189006

KEYWORD

nonn,easy

AUTHOR

Alois P. Heinz, Apr 15 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 7 05:14 EST 2019. Contains 329839 sequences. (Running on oeis4.)