The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A110078 a(n) is number of solutions of the equation sigma(x)=10^n. 4
 1, 0, 0, 0, 2, 4, 7, 9, 15, 23, 36, 53, 85, 124, 202, 289, 425, 603, 864, 1209, 1699, 2397, 3386, 4665, 6440, 8801, 12101, 16338, 22078, 29565, 39557, 52615, 69823, 92338, 121622, 159435, 208513, 271775, 353436, 457759, 591191, 760763, 976412, 1250011, 1596723, 2034474, 2585159, 3277192, 4145341, 5232888, 6591553 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS Conjecture: For n>2, a(n+1)>a(n). LINKS Max Alekseyev, Table of n, a(n) for n = 0..1000 Max A. Alekseyev, Computing the Inverses, their Power Sums, and Extrema for Euler's Totient and Other Multiplicative Functions. Journal of Integer Sequences, Vol. 19 (2016), Article 16.5.2 FORMULA a(n) = coefficient of x^n*y^n in Prod_p Sum_{u, v} x^u*y^v, where the product is taken over all primes p and the sum is taken over such u, v that 2^u*5^v = sigma(p^k) for some nonnegative integer k. - Max Alekseyev, Aug 08 2005 EXAMPLE a(4)=2 because 8743 & 9481 are all solutions of the equation sigma(x)=10^4. PROG (PARI) { a(d) = local(X, Y, P, L, n, f, p, m, l); X=Pol([1, 0], x); Y=Pol([1, 0], y); P=Set(); L=listcreate(10000); for(i=0, d, for(j=0, d, n=2^i*5^j; if(n==1, next); f=factorint(n-1)[, 1]; for(k=1, length(f), p=f[k]; m=n*(p-1)+1; while(m%p==0, m\=p); if(m==1, l=setsearch(P, p); if(l==0, l=setsearch(P, p, 1); P=setunion(P, [p]); listinsert(L, 1, l)); L[l]+=X^i*Y^j ) ) )); R=1+O(x^(d+1))+O(y^(d+1)); for(l=1, length(L), R*=L[l]); listkill(L); vector(d+1, n, polcoeff(polcoeff(R, n-1), n-1)) } (Alekseyev) CROSSREFS Cf. A110076, A110077. Sequence in context: A278977 A097433 A308758 * A257064 A085800 A155190 Adjacent sequences: A110075 A110076 A110077 * A110079 A110080 A110081 KEYWORD nonn AUTHOR Farideh Firoozbakht, Aug 01 2005 EXTENSIONS More terms from Max Alekseyev, Aug 08 2005 Terms a(44) onward from Max Alekseyev, Mar 04 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 1 07:16 EST 2023. Contains 359981 sequences. (Running on oeis4.)