

A278977


Number of initial digits of ternary Pi wherein the digit counts of zeros and ones are exactly equal.


4



0, 2, 4, 7, 9, 15, 17, 18, 22, 23, 1480, 1483, 1485, 1487, 1488, 1492, 1494, 1498, 1499, 1503, 1504, 1507, 1508, 1511, 1512, 1516, 1518, 1529, 1537, 1539, 1540, 1550, 1557, 1559, 1566, 1591, 1592, 1593, 1594, 1595, 1651, 1728, 1729, 1731, 1733, 1735, 1737, 1738, 1740, 1756, 1757, 1762, 1767, 1768, 1771, 1777, 1779, 1781, 1782, 1784, 1789, 66404
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

The subsequence of number of initial digits of ternary Pi wherein the digit counts of zeros, ones, and twos are all exactly equal begins 0, 15, 18. The next term, if it exists, is > 3^21 > 10^10.


LINKS

Hans Havermann, Table of n, a(n) for n = 1..1194


EXAMPLE

Ternary Pi is 10.01021101222201021100211...
0 is in the sequence because the first 0 digits contain 0 zeros and 0 ones.
22 is in the sequence because the first 22 digits contain 8 zeros and 8 ones.
23 is in the sequence because the first 23 digits contain 8 zeros and 8 ones.


CROSSREFS

Cf. A004602, A039624, A278974, A278978, A278979.
Sequence in context: A180742 A039904 A115162 * A097433 A308758 A110078
Adjacent sequences: A278974 A278975 A278976 * A278978 A278979 A278980


KEYWORD

nonn,base


AUTHOR

Hans Havermann, Dec 03 2016


STATUS

approved



