login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A110078 a(n) is number of solutions of the equation sigma(x)=10^n. 4

%I

%S 1,0,0,0,2,4,7,9,15,23,36,53,85,124,202,289,425,603,864,1209,1699,

%T 2397,3386,4665,6440,8801,12101,16338,22078,29565,39557,52615,69823,

%U 92338,121622,159435,208513,271775,353436,457759,591191,760763,976412,1250011,1596723,2034474,2585159,3277192,4145341,5232888,6591553

%N a(n) is number of solutions of the equation sigma(x)=10^n.

%C Conjecture: For n>2, a(n+1)>a(n).

%H Max Alekseyev, <a href="/A110078/b110078.txt">Table of n, a(n) for n = 0..1000</a>

%H Max A. Alekseyev, <a href="https://www.emis.de/journals/JIS/VOL19/Alekseyev/alek5.html">Computing the Inverses, their Power Sums, and Extrema for Euler's Totient and Other Multiplicative Functions</a>. Journal of Integer Sequences, Vol. 19 (2016), Article 16.5.2

%F a(n) = coefficient of x^n*y^n in Prod_p Sum_{u, v} x^u*y^v, where the product is taken over all primes p and the sum is taken over such u, v that 2^u*5^v = sigma(p^k) for some nonnegative integer k. - _Max Alekseyev_, Aug 08 2005

%e a(4)=2 because 8743 & 9481 are all solutions of the equation sigma(x)=10^4.

%o (PARI) { a(d) = local(X,Y,P,L,n,f,p,m,l); X=Pol([1,0],x); Y=Pol([1,0],y); P=Set(); L=listcreate(10000); for(i=0,d, for(j=0,d, n=2^i*5^j; if(n==1,next); f=factorint(n-1)[,1]; for(k=1,length(f), p=f[k]; m=n*(p-1)+1; while(m%p==0,m\=p); if(m==1, l=setsearch(P,p); if(l==0,l=setsearch(P,p,1); P=setunion(P,[p]); listinsert(L,1,l)); L[l]+=X^i*Y^j ) ) )); R=1+O(x^(d+1))+O(y^(d+1)); for(l=1,length(L),R*=L[l]); listkill(L); vector(d+1,n,polcoeff(polcoeff(R,n-1),n-1)) } (Alekseyev)

%Y Cf. A110076, A110077.

%K nonn

%O 0,5

%A _Farideh Firoozbakht_, Aug 01 2005

%E More terms from _Max Alekseyev_, Aug 08 2005

%E Terms a(44) onward from _Max Alekseyev_, Mar 04 2014

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 4 06:30 EST 2016. Contains 278749 sequences.