login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A110078 a(n) is number of solutions of the equation sigma(x)=10^n. 4

%I

%S 1,0,0,0,2,4,7,9,15,23,36,53,85,124,202,289,425,603,864,1209,1699,

%T 2397,3386,4665,6440,8801,12101,16338,22078,29565,39557,52615,69823,

%U 92338,121622,159435,208513,271775,353436,457759,591191,760763,976412,1250011,1596723,2034474,2585159,3277192,4145341,5232888,6591553

%N a(n) is number of solutions of the equation sigma(x)=10^n.

%C Conjecture: For n>2, a(n+1)>a(n).

%D Max A. Alekseyev, Computing the (number of) inverses of Euler's totient and other multiplicative functions, arXiv preprint arXiv:1401.6054, 2014

%H Max Alekseyev, <a href="/A110078/b110078.txt">Table of n, a(n) for n = 0..1000</a>

%F a(n) = coefficient of x^n*y^n in Prod_p Sum_{u, v} x^u*y^v, where the product is taken over all primes p and the sum is taken over such u, v that 2^u*5^v = sigma(p^k) for some nonnegative integer k. - _Max Alekseyev_, Aug 08 2005

%e a(4)=2 because 8743 & 9481 are all solutions of the equation sigma(x)=10^4.

%o (PARI) { a(d) = local(X,Y,P,L,n,f,p,m,l); X=Pol([1,0],x); Y=Pol([1,0],y); P=Set(); L=listcreate(10000); for(i=0,d, for(j=0,d, n=2^i*5^j; if(n==1,next); f=factorint(n-1)[,1]; for(k=1,length(f), p=f[k]; m=n*(p-1)+1; while(m%p==0,m\=p); if(m==1, l=setsearch(P,p); if(l==0,l=setsearch(P,p,1); P=setunion(P,[p]); listinsert(L,1,l)); L[l]+=X^i*Y^j ) ) )); R=1+O(x^(d+1))+O(y^(d+1)); for(l=1,length(L),R*=L[l]); listkill(L); vector(d+1,n,polcoeff(polcoeff(R,n-1),n-1)) } (Alekseyev)

%Y Cf. A110076, A110077.

%K nonn

%O 0,5

%A _Farideh Firoozbakht_, Aug 01 2005

%E More terms from _Max Alekseyev_, Aug 08 2005

%E Terms a(44) onward from _Max Alekseyev_, Mar 04 2014

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified November 27 10:53 EST 2014. Contains 250181 sequences.