login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A109974 Array read by downwards antidiagonals: sigma_k(n) for n >= 1, k >= 0. 25
1, 2, 1, 2, 3, 1, 3, 4, 5, 1, 2, 7, 10, 9, 1, 4, 6, 21, 28, 17, 1, 2, 12, 26, 73, 82, 33, 1, 4, 8, 50, 126, 273, 244, 65, 1, 3, 15, 50, 252, 626, 1057, 730, 129, 1, 4, 13, 85, 344, 1394, 3126, 4161, 2188, 257, 1, 2, 18, 91, 585, 2402, 8052, 15626, 16513, 6562, 513, 1
(list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
Rows sums are A108639. Antidiagonal sums are A109976. Matrix inverse is A109977.
From Wolfdieter Lang, Jan 29 2016: (Start)
The sum of the (k-1)th power of the divisors of n, sigma_(k-1)(n), appears also as eigenvalue lambda(k, n) of the Hecke operators T_n, n a positive integer, acting on the normalized Eisenstein series E_k(q) = ((2*Pi*i)^k/((k-1)!*Zeta(k))*G_k(q) with even k >= 4 and q = 2*Pi*i*z, where z is from the upper half of the complex plane: T_n E_k = sigma_(k-1)(n)*E_k. These Eisenstein series are entire modular forms of weight k, and each E_k(q) is a simultaneous eigenform of the Hecke operators T_n, for every n >= 1.
This results from the Fourier coefficients of E_k(q) = Sum_{m>=0} E(k, m)*q^m, with E(k, 0) =1 and E(k, m) = ((2*Pi*i)^k / ((k-1)!*Zeta(k))* sigma_(k-1)(m) for m >= 1, together with the Fourier coefficients of T_n E_k. The eigenvalues lambda(n, k) = (Sum_{d | gcd(n,m)} d^{k-1}*E(k, m*n/d^2)) / E(k, m) for each m >= 0. For m=0 this becomes lambda(n, k) = sigma_(k-1)(n).
For Hecke operators, Fourier coefficients and simultaneous eigenforms see, e.g., the Koecher - Krieg reference, p. 207, eqs. (5) and (6) and p. 211, section 4, or the Apostol reference, p. 120, eq. (13), pp. 129 - 134. (End)
REFERENCES
Tom M. Apostol, Modular functions and Dirichlet series in number theory, second Edition, Springer, 1990, pp. 120, 129 - 134.
Max Koecher and Aloys Krieg, Elliptische Funktionen und Modulformen, 2. Auflage, Springer, 2007, pp. 207, 211.
LINKS
FORMULA
Regarded as a triangle, T(n, k) = if(k<=n, sigma(k-1, n-k+1), 0). - Franklin T. Adams-Watters, Jul 17 2006
If the row index (the index of the antidiagonal of the array) is taken as m with offset 1 the triangle is T(m, k) = sigma_k(m-k), 1 <= k+1 <= m, otherwise 0. - Wolfdieter Lang, Jan 14 2016
G.f. for the triangle with offset 1: G(x,y) = Sum_{j>=1} x^j/((1-x^j)*(1-j*x*y)). - Robert Israel, Jan 14 2016
EXAMPLE
Start of array:
1, 2, 2, 3, 2, 4, ...
1, 3, 4, 7, 6, 12, ...
1, 5, 10, 21, 26, 50, ...
1, 9, 28, 73, 126, 252, ...
1, 17, 82, 273, 626, 1394, ...
...
The triangle T(m, k) with row offset 1 starts:
m\k 0 1 2 3 4 5 6 7 8 9 ...
1: 1
2: 2 1
3: 2 3 1
4: 3 4 5 1
5: 2 7 10 9 1
6: 4 6 21 28 17 1
7: 2 12 26 73 82 33 1
8: 4 8 50 126 273 244 65 1
9: 3 15 50 252 626 1057 730 129 1
10: 4 13 85 344 1394 3126 4161 2188 257 1
... - Wolfdieter Lang, Jan 14 2016
MAPLE
with(numtheory):
seq(seq(sigma[k](1+d-k), k=0..d), d=0..12); # Alois P. Heinz, Feb 06 2013
MATHEMATICA
rows=12; Flatten[Table[DivisorSigma[k-n, n], {k, 1, rows}, {n, k, 1, -1}]] (* Jean-François Alcover, Nov 15 2011 *)
PROG
(Magma)
A109974:= func< n, k | DivisorSigma(k-1, n-k+1) >;
[A109974(n, k): k in [1..n], n in [1..12]]; // G. C. Greubel, Oct 18 2023
(SageMath)
def A109974(n, k): return sigma(n-k+1, k-1)
flatten([[A109974(n, k) for k in range(1, n+1)] for n in range(1, 13)]) # G. C. Greubel, Oct 18 2023
CROSSREFS
Row sums A108639.
Diagonals A082245, A023887.
Related sequences: A082771, A109976, A109977, A109978.
Sequence in context: A036838 A066010 A209556 * A213008 A215520 A026820
KEYWORD
easy,nonn,tabl,nice
AUTHOR
Paul Barry, Jul 06 2005
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 19 02:20 EDT 2024. Contains 376003 sequences. (Running on oeis4.)