OFFSET
0,3
COMMENTS
Floretion Algebra Multiplication Program, FAMP Code: 2jbasesumseq[A*C] with A = + .5'k + .5k' + .5'ii' + .5'jj' and C = - .5'j + .5'k - .5j' + .5k' - 'ii' - .5'ij' - .5'ik' - .5'ji' - .5'ki'; sumtype: sum[Y[15]] = sum[ * ]
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (-2,2,1,-3,2,2,-1).
FORMULA
From Colin Barker, May 15 2019: (Start)
G.f.: x*(1 + 2*x^2 - 2*x^3 + x^4) / ((1 - x)*(1 + x)^2*(1 + 2*x - x^2)*(1 - x + x^2)).
a(n) = -2*a(n-1) + 2*a(n-2) + a(n-3) - 3*a(n-4) + 2*a(n-5) + 2*a(n-6) - a(n-7) for n>6. (End)
MATHEMATICA
LinearRecurrence[{-2, 2, 1, -3, 2, 2, -1}, {0, 1, -2, 8, -21, 54, -134}, 40] (* Harvey P. Dale, Mar 01 2023 *)
PROG
(PARI) concat(0, Vec(x*(1 + 2*x^2 - 2*x^3 + x^4) / ((1 - x)*(1 + x)^2*(1 + 2*x - x^2)*(1 - x + x^2)) + O(x^35))) \\ Colin Barker, May 15 2019
CROSSREFS
KEYWORD
easy,sign
AUTHOR
Creighton Dement, Aug 13 2005
STATUS
approved