

A216893


Fibonacci numbers whose sum of prime divisors equals two times a Fibonacci number.


1



2, 8, 21, 55, 377, 610, 17711, 121393, 832040, 5702887, 19740274219868223167
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Fibonacci number F such that sopf(F)= 2*F’ where F’ is a Fibonacci number and sopf(F) is the sum of the distinct primes dividing F (A008472).


LINKS

Table of n, a(n) for n=1..11.


EXAMPLE

121393 = F(26) = 233*521 is in the sequence because 233 + 521 = 2*377 = 2*F(14).


MAPLE

with(combinat, fibonacci):with(numtheory): for n from 1 to 300 do:x:=fibonacci(n):y:=factorset(x):n1:=nops(y): s:=sum('y[i] ', 'i'=1..n1): ii:=0:for m from 1 to n while(ii=0) do:if s =2*fibonacci(m) then ii:=1:printf(`%d, `, x): else fi:od:od:


CROSSREFS

Cf. A008472, A000045
Sequence in context: A303721 A109782 A237268 * A264245 A123044 A143229
Adjacent sequences: A216890 A216891 A216892 * A216894 A216895 A216896


KEYWORD

nonn,hard


AUTHOR

Michel Lagneau, Sep 19 2012


STATUS

approved



