login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A109781
Expansion of (-1+x+2*x^2-6*x^3+x^4+x^5) / ((x-1)*(x^2-x+1)*(x^2-2*x-1)*(x+1)^2).
1
-1, 3, -6, 11, -27, 60, -141, 337, -808, 1943, -4687, 11306, -27287, 65869, -159012, 383877, -926753, 2237366, -5401467, 13040283, -31482014, 76004289, -183490573, 442985412, -1069461373, 2581908135, -6233277618, 15048463343, -36330204279, 87708871872, -211747947993
OFFSET
0,2
COMMENTS
Floretion Algebra Multiplication Program, FAMP Code: 1tessumseq[A*C] with A = + .5'k + .5k' + .5'ii' + .5'jj' and C = - .5'j + .5'k - .5j' + .5k' - 'ii' - .5'ij' - .5'ik' - .5'ji' - .5'ki'; sumtype: sum[Y[15]] = sum[ * ]
FORMULA
a(n) = -2*a(n-1) + 2*a(n-2) + a(n-3) - 3*a(n-4) + 2*a(n-5) + 2*a(n-6) - a(n-7) for n>6. - Colin Barker, May 14 2019
PROG
(PARI) Vec(-(1 - x - 2*x^2 + 6*x^3 - x^4 - x^5) / ((1 - x)*(1 + x)^2*(1 + 2*x - x^2)*(1 - x + x^2)) + O(x^30)) \\ Colin Barker, May 14 2019
CROSSREFS
Sequence in context: A331536 A365294 A221182 * A360888 A101958 A153982
KEYWORD
easy,sign
AUTHOR
Creighton Dement, Aug 13 2005
STATUS
approved