

A109359


Expansion of x*(1+x^2+3*x^3+2*x^4+x^5+4*x^6) / ((x^2+1)*(x^2x+1)*(x1)^2*(x+1)^2).


1



0, 1, 1, 2, 4, 7, 7, 10, 10, 13, 11, 16, 16, 21, 17, 22, 20, 27, 23, 30, 26, 33, 27, 36, 32, 41, 33, 42, 36, 47, 39, 50, 42, 53, 43, 56, 48, 61, 49, 62, 52, 67, 55, 70, 58, 73, 59, 76, 64, 81, 65, 82, 68, 87, 71, 90, 74, 93, 75, 96, 80, 101, 81, 102, 84, 107, 87, 110, 90, 113, 91
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,4


LINKS

Colin Barker, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (1,0,1,2,1,0,1,1).


FORMULA

a(n) = a(n1)  a(n3) + 2*a(n4)  a(n5) + a(n7)  a(n8) for n>7.  Colin Barker, May 14 2019


PROG

Floretion Algebra Multiplication Program, FAMP Code: 4kbaseisumseq[.25'i + .25i' + .5'ij' + .5'ji' + .25'jk' + .25'kj']; sumtype: (Y[15], *, sum)
(PARI) concat(0, Vec(x*(1 + x^2 + 3*x^3 + 2*x^4 + x^5 + 4*x^6) / ((1  x)^2*(1 + x)^2*(1  x + x^2)*(1 + x^2)) + O(x^70))) \\ Colin Barker, May 14 2019


CROSSREFS

Sequence in context: A161368 A023978 A152488 * A025087 A291810 A178183
Adjacent sequences: A109356 A109357 A109358 * A109360 A109361 A109362


KEYWORD

nonn,easy


AUTHOR

Creighton Dement, Aug 22 2005


STATUS

approved



