The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A109362 Period 6: repeat [0, 0, 1, 2, 0, 3]. 0
 0, 0, 1, 2, 0, 3, 0, 0, 1, 2, 0, 3, 0, 0, 1, 2, 0, 3, 0, 0, 1, 2, 0, 3, 0, 0, 1, 2, 0, 3, 0, 0, 1, 2, 0, 3, 0, 0, 1, 2, 0, 3, 0, 0, 1, 2, 0, 3, 0, 0, 1, 2, 0, 3, 0, 0, 1, 2, 0, 3, 0, 0, 1, 2, 0, 3, 0, 0, 1, 2, 0, 3, 0, 0, 1, 2, 0, 3, 0, 0, 1, 2 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 LINKS Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,1). FORMULA G.f.: x^2*(1 + 2*x + 3*x^3)/((1 - x)*(x + 1)*(x^2 + x + 1)*(x^2 - x + 1)). [corrected by Georg Fischer, May 15 2019] a(n) = (1/30)*(17*(n mod 6) - 13*((n+1) mod 6) + 12*((n+2) mod 6) - 3*((n+3) mod 6) - 3*((n+4) mod 6) + 2*((n+5) mod 6)). - Paolo P. Lava, Nov 27 2006 a(n) = (3 - cos(n*Pi/3) - 2*cos(n*Pi) - sqrt(3)*sin(n*Pi/3) - 2*sqrt(3)*sin(2*n*Pi/3)) / 3. - Wesley Ivan Hurt, Apr 26 2020 MATHEMATICA PadRight[{}, 100, {0, 0, 1, 2, 0, 3}] (* or *) LinearRecurrence[{0, 0, 0, 0, 0, 1}, {0, 0, 1, 2, 0, 3}, 100] (* Georg Fischer, May 15 2019 *) PROG Floretion Algebra Multiplication Program, FAMP Code: 1em[I]sumseq[ - .25'i - .5'j - .25i' - .5j' + .25'ii' + .25'jj' - .75'kk' + .25'jk' + .25'kj' + .25e]; sumtype: (Y[15], *, sum) (PARI) a(n)=[0, 0, 1, 2, 0, 3][n%6+1]; \\ Georg Fischer, May 15 2019 CROSSREFS Sequence in context: A261727 A234579 A309332 * A085246 A268726 A035182 Adjacent sequences: A109359 A109360 A109361 * A109363 A109364 A109365 KEYWORD nonn,easy AUTHOR Creighton Dement, Aug 22 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 1 18:55 EST 2022. Contains 358475 sequences. (Running on oeis4.)