login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A109361 a(n) = Product_{k=1..n} sigma(k)/d(k), where sigma(k) = Sum_{j|k} j and d(k) = Sum_{j|k} 1. Set a(n) = 0 if the corresponding product is not an integer (e.g., for n=2 and n=10). 0
1, 0, 3, 7, 21, 63, 252, 945, 4095, 0, 110565, 515970, 3611790, 21670740, 130024440, 806151528, 7255363752, 47159864388, 471598643880, 3301190507160, 26409524057280, 237685716515520, 2852228598186240, 21391714486396800 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

The product at n = 2 is the noninteger 1.5. The product at n = 10 is the noninteger 18427.5. Jack Brennen's observed that the only values which are not integers occur when n = 2 or 10, for n < 5000. Are all products for n >= 11 integers?

No other noninteger found up to 200000. - Michel Marcus, Sep 14 2015

LINKS

Table of n, a(n) for n=1..24.

FORMULA

Product_{k=1..n} sigma(k)/d(k) = Product_{p=primes} Product_{k>=1} ((p^(k+1)-1)*k/((p^k -1)(k+1)))^floor(n/p^k).

a(n) = A066780(n)/A066843(n) if this is an integer, else 0. - Michel Marcus, Sep 14 2015

EXAMPLE

a(4) = 1 * 3 * 4 * 7 /(1 * 2 * 2 * 3) = 7.

MATHEMATICA

Table[If[IntegerQ[Product[DivisorSigma[1, k]/Length[Divisors[k]], {k, 1, n}]], Product[DivisorSigma[1, k]/Length[Divisors[k]], {k, 1, n}], 0], {n, 1, 30}] (* Stefan Steinerberger, Oct 24 2007 *)

PROG

(PARI) a(n) = my(q = prod(k=1, n, sigma(k)/numdiv(k))); if (denominator(q)==1, q, 0); \\ Michel Marcus, Sep 14 2015

CROSSREFS

Cf. A000005, A000203.

Cf. A066780, A066843.

Sequence in context: A141495 A151412 A121797 * A052805 A148674 A148675

Adjacent sequences:  A109358 A109359 A109360 * A109362 A109363 A109364

KEYWORD

nonn

AUTHOR

Leroy Quet, Aug 22 2005

EXTENSIONS

More terms from Stefan Steinerberger, Oct 24 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 15 03:08 EST 2017. Contains 296020 sequences.