login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A108791
a(2n) = -5*(fibonacci(6n+2))^2, a(2n+1) = (lucas(6n+5))^2.
1
-5, 121, -2205, 39601, -710645, 12752041, -228826125, 4106118241, -73681302245, 1322157322201, -23725150497405, 425730551631121, -7639424778862805, 137083915467899401, -2459871053643326445, 44140595050111976641, -792070839848372253125
OFFSET
0,1
COMMENTS
Define the floretions A = + 'i - 'k + i' - k' - 'jj' - 'ij' - 'ji' - 'jk' - 'kj'; B = - 'i + 'j - i' + j' - 'kk' - 'ik' - 'jk' - 'ki' - 'kj'; C = - 'j + 'k - j' + k' - 'ii' - 'ij' - 'ik' - 'ji' - 'ki'. The floretion given in the program code is A*B*C.
FORMULA
G.f. (-5+26*x-x^2)/((x+1)*(x^2+18*x+1)).
a(0)=-5, a(1)=121, a(2)=-2205, a(n) = -19*a(n-1)-19*a(n-2)-a(n-3). - Harvey P. Dale, Jan 11 2016
a(n) = (2*(-1)^n-1/2*(-9-4*sqrt(5))^(-n)*(7-3*sqrt(5)+(-9-4*sqrt(5))^(2*n)*(7+3*sqrt(5)))). - Colin Barker, Mar 04 2016
a(n) = -7*(-1)^n*A049660(n+1) +3*(-1)^n*A049660(n) +2*(-1)^n. - R. J. Mathar, Sep 11 2019
MAPLE
seriestolist(series(-(5-26*x+x^2)/((x+1)*(x^2+18*x+1)), x=0, 25)); -or- Floretion Algebra Multiplication Program, FAMP Code: 1vesseq[ + 14'i - 2'j - 2'k + 14i' - 2j' - 2k' + 4'ii' - 12'jj' + 12'kk' - 4'ij' - 4'ji' - 8'jk' - 8'kj' - 5e]
MATHEMATICA
CoefficientList[Series[(-5+26x-x^2)/((x+1)(x^2+18x+1)), {x, 0, 20}], x] (* or *) LinearRecurrence[{-19, -19, -1}, {-5, 121, -2205}, 20] (* Harvey P. Dale, Jan 11 2016 *)
PROG
(PARI) Vec(-(5-26*x+x^2)/((1+x)*(1+18*x+x^2)) + O(x^25)) \\ Colin Barker, Mar 04 2016
CROSSREFS
Sequence in context: A258978 A128275 A028448 * A282271 A179299 A012179
KEYWORD
easy,sign
AUTHOR
Creighton Dement, Jul 06 2005
STATUS
approved