login
A108794
Primes whose 10's complement is a semiprime, i.e., p is prime and 10^L - p is a semiprime, where L is the number of digits in p.
1
13, 23, 31, 43, 61, 67, 79, 101, 107, 131, 149, 151, 157, 193, 197, 211, 229, 233, 251, 263, 269, 277, 283, 293, 311, 313, 331, 367, 389, 409, 419, 421, 449, 457, 463, 467, 499, 503, 547, 563, 587, 593, 607, 619, 659, 661, 673, 677, 691, 701, 709, 733, 751
OFFSET
1,1
COMMENTS
Some twin prime terms are (149,151), (311,313), (419,421), (659,661), ... Conjecture: there are infinitely many twin primes in this sequence.
LINKS
EXAMPLE
563 is a term because it is prime and 10^3 - 563 = 437 = 19*23.
MATHEMATICA
Select[Prime[Range[200]], PrimeOmega[10^IntegerLength[#]-#]==2&] (* Harvey P. Dale, Oct 13 2011 *)
CROSSREFS
Sequence in context: A143788 A351686 A165459 * A272721 A089777 A050857
KEYWORD
easy,nonn,base
AUTHOR
Jason Earls, Jul 09 2005
STATUS
approved