The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A258978 a(n) = 1 + sigma(n) + sigma(n)^2 + sigma(n)^3 + sigma(n)^4. 3
 5, 121, 341, 2801, 1555, 22621, 4681, 54241, 30941, 111151, 22621, 637421, 41371, 346201, 346201, 954305, 111151, 2374321, 168421, 3187591, 1082401, 1727605, 346201, 13179661, 954305, 3187591, 2625641, 10013305, 837931, 27252361, 1082401, 16007041, 5421361 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS Robert Price, Table of n, a(n) for n = 1..10000 FORMULA a(n) = 1 + A000203(n) + A000203(n)^2 + A000203(n)^3 + A000203(n)^4. a(n) = A053699(A000203(n)). - Michel Marcus, Jun 25 2015 MAPLE with(numtheory): A258978:=n->1+sigma(n)+sigma(n)^2+sigma(n)^3+sigma(n)^4: seq(A258978(n), n=1..40); # Wesley Ivan Hurt, Jul 09 2015 MATHEMATICA Table[1 + DivisorSigma[1, n] + DivisorSigma[1, n]^2 + DivisorSigma[1, n]^3 + DivisorSigma[1, n]^4, {n, 10000}] Table[Cyclotomic[5, DivisorSigma[1, n]], {n, 10000}] Total/@Table[DivisorSigma[1, n]^ex, {n, 40}, {ex, 0, 4}] (* Harvey P. Dale, Jun 24 2017 *) PROG (MAGMA) [(1 + DivisorSigma(1, n) + DivisorSigma(1, n)^2 + DivisorSigma(1, n)^3 + DivisorSigma(1, n)^4): n in [1..35]]; // Vincenzo Librandi, Jun 16 2015 (PARI) vector(50, n, polcyclo(6, sigma(n))) \\ Michel Marcus, Jun 25 2015 CROSSREFS Cf. A000203 (sum of divisors of n). Cf. A258979 (indices of primes in this sequence), A258980 (corresponding primes). Sequence in context: A097993 A172806 A054752 * A128275 A028448 A108791 Adjacent sequences:  A258975 A258976 A258977 * A258979 A258980 A258981 KEYWORD easy,nonn AUTHOR Robert Price, Jun 15 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 20 01:55 EDT 2021. Contains 343118 sequences. (Running on oeis4.)