login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A108684 a(n) = (n+1)*(n+2)*(n+3)*(19*n^3 + 111*n^2 + 200*n + 120)/720. 0
1, 15, 93, 372, 1141, 2926, 6594, 13476, 25509, 45397, 76791, 124488, 194649, 295036, 435268, 627096, 884697, 1224987, 1667953, 2237004, 2959341, 3866346, 4993990, 6383260, 8080605, 10138401, 12615435, 15577408, 19097457, 23256696 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Kekulé numbers for certain benzenoids.

REFERENCES

S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (p.233, # 10).

LINKS

Table of n, a(n) for n=0..29.

Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).

FORMULA

G.f.: (1 + 8*x + 9*x^2 + x^3)/(1-x)^7.

a(n) = Sum_{k=0...n} A000217(n+1-k) * (A000292(n+1) - A000292(k)). - J. M. Bergot, Jun 07 2017

a(n) = A050405(n) + A181888(n+1). - R. J. Mathar, Jul 22 2022

MAPLE

a:=n->(n+1)*(n+2)*(n+3)*(19*n^3+111*n^2+200*n+120)/720: seq(a(n), n=0..33);

MATHEMATICA

Table[(n + 1) (n + 2) (n + 3) (19 n^3 + 111 n^2 + 200 n + 120)/720, {n, 0, 29}] (* or *)

CoefficientList[Series[(1 + 8 x + 9 x^2 + x^3)/(1 - x)^7, {x, 0, 29}], x] (* or *)

Table[Sum[Binomial[(n + 1 - k) + 1, 2] Apply[Subtract, Map[Binomial[# + 2, 3] &, {n + 1, k}]], {k, 0, n}], {n, 0, 29}] (* Michael De Vlieger, Jun 08 2017 *)

CROSSREFS

Sequence in context: A329759 A041428 A052226 * A125325 A126483 A226766

Adjacent sequences: A108681 A108682 A108683 * A108685 A108686 A108687

KEYWORD

nonn,easy

AUTHOR

Emeric Deutsch, Jun 19 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 7 22:58 EST 2023. Contains 360132 sequences. (Running on oeis4.)