OFFSET
0,2
REFERENCES
A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
FORMULA
a(n) = binomial(n+5, 5)*(3*n + 2)/2.
G.f.: (1+8*x)/(1-x)^7.
E.g.f.: (240 +3360*x +6600*x^2 +4000*x^3 +950*x^4 +92*x^5 +3* x^6) *exp(x)/240. - G. C. Greubel, Oct 30 2019
MAPLE
seq(binomial(n+5, 5)*(3*n+2)/2, n=0..40); # G. C. Greubel, Oct 30 2019
MATHEMATICA
Accumulate[Accumulate[Table[(n+1)(n+2)(n+3)(9n+4)/24, {n, 0, 40}]]] (* Harvey P. Dale, Aug 19 2012 *)
PROG
(PARI) vector(41, n, binomial(n+4, 5)*(3*n-1)/2) \\ G. C. Greubel, Oct 30 2019
(Magma) [Binomial(n+5, 5)*(3*n+2)/2: n in [0..40]]; // G. C. Greubel, Oct 30 2019
(Sage) [binomial(n+5, 5)*(3*n+2)/2 for n in (0..40)] # G. C. Greubel, Oct 30 2019
(GAP) List([0..40], n-> Binomial(n+5, 5)*(3*n+2)/2); # G. C. Greubel, Oct 30 2019
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Barry E. Williams, Dec 21 1999
EXTENSIONS
Corrected by T. D. Noe, Nov 09 2006
STATUS
approved