login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A107711
Triangle read by rows: T(0,0)=1, T(n,m) = binomial(n,m) * gcd(n,m)/n.
9
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 5, 10, 5, 1, 1, 1, 1, 3, 5, 5, 3, 1, 1, 1, 1, 7, 7, 35, 7, 7, 1, 1, 1, 1, 4, 28, 14, 14, 28, 4, 1, 1, 1, 1, 9, 12, 42, 126, 42, 12, 9, 1, 1, 1, 1, 5, 15, 30, 42, 42, 30, 15, 5, 1, 1, 1, 1, 11, 55, 165, 66, 462, 66, 165, 55, 11, 1, 1
OFFSET
0,13
COMMENTS
T(0,0) is an indeterminate, but 1 seems a logical value to assign it. T(n,0) = T(n,1) = T(n,n-1) = T(n,n) = 1.
T(2n,n) = A001700(n-1) (n>=1). - Emeric Deutsch, Jun 13 2005
LINKS
Wolfdieter Lang, On Collatz' Words, Sequences and Trees, arXiv:1404.2710 [math.NT], 2014 and J. Int. Seq. 17 (2014) # 14.11.7.
FORMULA
From Wolfdieter Lang, Feb 28 2014 (Start)
T(n, m) = T(n-1,m)*(n-1)*gcd(n,m)/((n-m)*gcd(n-1,m)), n > m >= 1, T(n, 0) = 1, T(n, n) = 1, otherwise 0.
T(n, m) = binomial(n-1,m-1)*gcd(n,m)/m for n >= m >= 1, T(n,0) = 1, otherwise 0 (from iteration of the preceding recurrence).
T(n, m) = T(n-1, m-1)*(n-1)*gcd(n,m)/(m*gcd(n-1,m-1)) for n >= m >= 2, T(n, 0) = 1, T(n, 1) = 0, otherwise 0 (from the preceding formula).
T(2*n, n) = A001700(n-1) (n>=1) (see the Emeric Deutsch comment above), T(2*n, n-1) = A234040(n), T(2*n+1,n) = A000108(n), n >= 0 (Catalan numbers).
Column sequences: T(n+2, 2) = A026741(n+1), T(n+3, 3) = A234041(n), T(n+4, 4) = A208950(n+2), T(n+5, 5) = A234042, n >= 0. (End)
EXAMPLE
T(6,2)=5 because binomial(6,2)*gcd(6,2)/6 = 15*2/6 = 5.
The triangle T(n,m) begins:
n\m 0 1 2 3 4 5 6 7 8 9 10...
0: 1
1: 1 1
2: 1 1 1
3: 1 1 1 1
4: 1 1 3 1 1
5: 1 1 2 2 1 1
6: 1 1 5 10 5 1 1
7: 1 1 3 5 5 3 1 1
8: 1 1 7 7 35 7 7 1 1
9: 1 1 4 28 14 14 28 4 1 1
10: 1 1 9 12 42 126 42 12 9 1 1
n\m 0 1 2 3 4 5 6 7 8 9 10...
... reformatted - Wolfdieter Lang, Feb 23 2014
MAPLE
a:=proc(n, k) if n=0 and k=0 then 1 elif k<=n then binomial(n, k)*gcd(n, k)/n else 0 fi end: for n from 0 to 13 do seq(a(n, k), k=0..n) od; # yields sequence in triangular form. - Emeric Deutsch, Jun 13 2005
MATHEMATICA
T[0, 0] = 1; T[n_, m_] := Binomial[n, m] * GCD[n, m]/n;
Table[T[n, m], {n, 1, 13}, {m, 1, n}] // Flatten (* Jean-François Alcover, Nov 16 2017 *)
PROG
(Haskell)
a107711 n k = a107711_tabl !! n !! k
a107711_row n = a107711_tabl !! n
a107711_tabl = [1] : zipWith (map . flip div) [1..]
(tail $ zipWith (zipWith (*)) a007318_tabl a109004_tabl)
-- Reinhard Zumkeller, Feb 28 2014
CROSSREFS
KEYWORD
tabl,nonn
AUTHOR
Leroy Quet, Jun 10 2005
EXTENSIONS
More terms from Emeric Deutsch, Jun 13 2005
STATUS
approved