login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A107334 G.f.: (3-4*x-3*x^2)/(1-2*x-3*x^2+2*x^3). 0
3, 2, 10, 20, 66, 172, 502, 1388, 3938, 11036, 31110, 87452, 246162, 692460, 1948502, 5482060, 15424706, 43398588, 122107174, 343560700, 966645746, 2719759244, 7652334326, 21530654892, 60578794274, 170444884572, 479564842182, 1349306749532, 3796418256466 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

LINKS

Table of n, a(n) for n=0..28.

Index entries for linear recurrences with constant coefficients, signature (2,3,-2).

FORMULA

a(n)=b1^n+b2^n+b3^n where b1, b2, b3 are the roots of x^3-2*x^2-3*x+2.

Limit a[n]/a[n-1] as n -> infinity is the largest root.

MATHEMATICA

b3 = x /. NSolve[x^3 - 2*x^2 - 3*x + 2 == 0, x][[3]] b2 = x /. NSolve[x^3 - 2*x^2 - 3*x + 2 == 0, x][[2]] b1 = x /. NSolve[x^3 - 2*x^2 - 3*x + 2 == 0, x][[1]] digits = 25 a = Table[2*(b3^n + b1^n + b2^n)/(b3 + b2 + b1), {n, 0, digits}]

PROG

(PARI) a(n)=if(n<0, 0, polsym(x^3-2*x^2-3*x+2, n)[n+1])

(PARI) a(n)=([0, 1, 0; 0, 0, 1; -2, 3, 2]^n*[3; 2; 10])[1, 1] \\ Charles R Greathouse IV, Jul 21 2016

CROSSREFS

Sequence in context: A082219 A034461 A070033 * A096073 A088302 A074199

Adjacent sequences:  A107331 A107332 A107333 * A107335 A107336 A107337

KEYWORD

nonn,easy

AUTHOR

Roger L. Bagula, May 22 2005

EXTENSIONS

Edited by N. J. A. Sloane, Jun 08 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 19 07:16 EST 2017. Contains 294916 sequences.