login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A107334
G.f.: (3-4*x-3*x^2)/(1-2*x-3*x^2+2*x^3).
0
3, 2, 10, 20, 66, 172, 502, 1388, 3938, 11036, 31110, 87452, 246162, 692460, 1948502, 5482060, 15424706, 43398588, 122107174, 343560700, 966645746, 2719759244, 7652334326, 21530654892, 60578794274, 170444884572, 479564842182, 1349306749532, 3796418256466
OFFSET
0,1
FORMULA
a(n)=b1^n+b2^n+b3^n where b1, b2, b3 are the roots of x^3-2*x^2-3*x+2.
Limit a[n]/a[n-1] as n -> infinity is the largest root.
MATHEMATICA
b3 = x /. NSolve[x^3 - 2*x^2 - 3*x + 2 == 0, x][[3]] b2 = x /. NSolve[x^3 - 2*x^2 - 3*x + 2 == 0, x][[2]] b1 = x /. NSolve[x^3 - 2*x^2 - 3*x + 2 == 0, x][[1]] digits = 25 a = Table[2*(b3^n + b1^n + b2^n)/(b3 + b2 + b1), {n, 0, digits}]
PROG
(PARI) a(n)=if(n<0, 0, polsym(x^3-2*x^2-3*x+2, n)[n+1])
(PARI) a(n)=([0, 1, 0; 0, 0, 1; -2, 3, 2]^n*[3; 2; 10])[1, 1] \\ Charles R Greathouse IV, Jul 21 2016
CROSSREFS
Sequence in context: A082219 A034461 A070033 * A335719 A096073 A088302
KEYWORD
nonn,easy
AUTHOR
Roger L. Bagula, May 22 2005
EXTENSIONS
Edited by N. J. A. Sloane, Jun 08 2007
STATUS
approved