login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A107331 SquareRootSigma(n): Floor of sum of square root of divisors of n. If n = Product p_i^r_i then SRSigma(n) = Product Floor[(p_i^(r_i/2+1/2)-1)/(p_i^(1/2)-1)]. 0
1, 2, 2, 4, 3, 4, 3, 7, 5, 6, 4, 8, 4, 6, 6, 11, 5, 10, 5, 12, 6, 8, 5, 14, 8, 8, 10, 12, 6, 12, 6, 16, 8, 10, 9, 20, 7, 10, 8, 21, 7, 12, 7, 16, 15, 10, 7, 22, 10, 16, 10, 16, 8, 20, 12, 21, 10, 12, 8, 24, 8, 12, 15, 24, 12, 16, 9, 20, 10, 18, 9, 35, 9, 14, 16, 20, 12, 16, 9, 33, 19, 14 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Whereas A086671 takes the sum of the floor of the square roots of each of the divisors of n and A058266 takes the floor of the product formula, this sequence takes the product of the floor of the individual prime components of the product formula.

LINKS

Table of n, a(n) for n=1..82.

EXAMPLE

a(8) = floor((2^((3+1)/2)-1)/2^(1/2)-1)) = floor(3/(sqrt(2)-1)) = floor(3(sqrt(2)+1)) = 7.

MATHEMATICA

f[n_] := Block[{pfe = FactorInteger[n]}, Times @@ Floor[((First /@ pfe)^((Last /@ pfe + 1)/2) - 1)/((First /@ pfe)^(1/2) - 1)]]; Table[ f[n], {n, 82}] (* Robert G. Wilson v, Jun 08 2005 *)

CROSSREFS

Cf. A033635, A086671, A058266.

Sequence in context: A224901 A274176 A083742 * A283187 A324391 A087808

Adjacent sequences:  A107328 A107329 A107330 * A107332 A107333 A107334

KEYWORD

nonn,mult

AUTHOR

Yasutoshi Kohmoto, May 23 2005

EXTENSIONS

Edited, corrected and extended by Robert G. Wilson v, Jun 08 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 17 05:27 EST 2019. Contains 329217 sequences. (Running on oeis4.)