login
A335719
a(n) = 2*a(n-1) + 3*a(n-2) + 5*a(n-3), a(0) = 3, a(1) = 2, a(2) = 10.
3
3, 2, 10, 41, 122, 417, 1405, 4671, 15642, 52322, 174925, 585026, 1956437, 6542577, 21879595, 73169106, 244689882, 818285057, 2736485290, 9151275161, 30603431477, 102343114887, 342252900010, 1144552302066, 3827578878597, 12800079163442, 42805656473005, 143149444829321
OFFSET
0,1
COMMENTS
In Soykan (2020), this sequences is referred to as H_n, "Grahaml-Lucas sequence" (sic), see p. 45.
LINKS
YĆ¼ksel Soykan, On Generalized Grahaml Numbers, Journal of Advances in Mathematics and Computer Science (2020) Vol. 35, No. 2: 42-57, Article no. JAMCS.55255.
FORMULA
G.f.: (3 - 4*x - 3*x^2)/(1 - 2*x - 3*x^2 - 5*x^3).
MATHEMATICA
LinearRecurrence[{2, 3, 5}, {3, 2, 10}, 28] (* or *)
CoefficientList[Series[(3 - 4 x - 3 x^2)/(1 - 2 x - 3 x^2 - 5 x^3), {x, 0, 27}], x]
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Michael De Vlieger, Jun 18 2020
STATUS
approved