login
A107189
Primes of the form 3x^2 + 26y^2.
1
3, 29, 53, 101, 107, 131, 173, 179, 251, 269, 347, 389, 419, 443, 467, 491, 563, 653, 659, 677, 701, 797, 971, 1013, 1091, 1109, 1187, 1277, 1283, 1301, 1427, 1499, 1613, 1637, 1667, 1733, 1811, 1901, 1907, 1949, 1973, 1979, 2003, 2027, 2141
OFFSET
1,1
COMMENTS
Discriminant = -312. See A107132 for more information.
LINKS
Vincenzo Librandi and Ray Chandler, Table of n, a(n) for n = 1..10000 [First 1000 terms from Vincenzo Librandi]
N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
FORMULA
The primes are congruent to {3, 29, 35, 53, 77, 101, 107, 131, 155, 173, 179, 251, 269} (mod 312). - T. D. Noe, May 02 2008
MATHEMATICA
QuadPrimes2[3, 0, 26, 10000] (* see A106856 *)
PROG
(Magma) [ p: p in PrimesUpTo(3000) | p mod 312 in {3, 29, 35, 53, 77, 101, 107, 131, 155, 173, 179, 251, 269} ]; // Vincenzo Librandi, Jul 28 2012
(PARI) list(lim)=my(v=List([3]), s=[29, 35, 53, 77, 101, 107, 131, 155, 173, 179, 251, 269]); forprime(p=29, lim, if(setsearch(s, p%312), listput(v, p))); Vec(v) \\ Charles R Greathouse IV, Feb 10 2017
CROSSREFS
Cf. A139827.
Sequence in context: A364076 A228613 A071150 * A059761 A210360 A049437
KEYWORD
nonn,easy
AUTHOR
T. D. Noe, May 13 2005
STATUS
approved