login
A106924
Primes of the form 4x^2 + xy + 4y^2, with x and y any integer.
1
7, 37, 43, 109, 151, 193, 211, 331, 337, 379, 457, 487, 499, 673, 709, 751, 757, 883, 907, 919, 991, 1117, 1171, 1201, 1303, 1327, 1381, 1423, 1429, 1453, 1471, 1549, 1597, 1747, 1759, 1789, 1801, 1873, 2017, 2053, 2083, 2137, 2143, 2221, 2311, 2347
OFFSET
1,1
COMMENTS
Discriminant = -63.
LINKS
Vincenzo Librandi and Ray Chandler, Table of n, a(n) for n = 1..10000 [First 1000 terms from Vincenzo Librandi]
N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
MATHEMATICA
Union[QuadPrimes2[4, 1, 4, 10000], QuadPrimes2[4, -1, 4, 10000]] (* see A106856 *)
PROG
(PARI) {a(n)= local(m, c, x, y); if(n<1, 0, c=0; m=1; while( c<n, m++; if( kronecker(m, 7)!>=0&isprime(m), for(x=0, sqrtint(m\7), if(issquare(m-7*x^2, &y), if( y%3==0, c++); break)))); m)} /* Michael Somos, May 28 2005 */
CROSSREFS
Sequence in context: A139492 A141159 A092475 * A076285 A077720 A235463
KEYWORD
nonn,easy
AUTHOR
T. D. Noe, May 09 2005
STATUS
approved