login
A092475
Primes p such that p + 2^2, p + 4^2 and p + 6^2 are also primes.
2
7, 37, 43, 67, 163, 277, 463, 487, 823, 1087, 1093, 1213, 1423, 2683, 3907, 4447, 5653, 7687, 8677, 8803, 11467, 11923, 13147, 13693, 15787, 16417, 16657, 16927, 18253, 18397, 19387, 20113, 20353, 21487, 27763, 28627, 30493, 34483, 38917, 39103, 40483, 41227
OFFSET
1,1
LINKS
FORMULA
A049492 INTERSECT A156104. - R. J. Mathar, Mar 26 2024
EXAMPLE
a(3) = 43.
43 + 2^2 = 43 + 4 = 47, which is prime.
43 + 4^2 = 43 + 16 = 59, which is prime.
43 + 6^2 = 43 + 36 = 79, which is prime.
MATHEMATICA
Select[Prime[Range[5000]], And@@PrimeQ[{#+4, #+16, #+36}]&] (* Harvey P. Dale, Jun 09 2011 *)
CROSSREFS
Subsequence of A049492.
Sequence in context: A322174 A139492 A141159 * A106924 A076285 A077720
KEYWORD
nonn
AUTHOR
Ray G. Opao, Mar 25 2004
EXTENSIONS
More terms from Harvey P. Dale, Jun 09 2011
STATUS
approved