OFFSET
1,1
COMMENTS
The ratio a(n)/(2*j(n)) tends to sqrt(2) as n increases.
After 3, first differences of A301383. - Bruno Berselli, Mar 22 2018
For n > 0, a(n+1) is the n-th almost Lucas-balancing number of first type (see Tekcan and Erdem). - Stefano Spezia, Nov 25 2022
LINKS
Colin Barker, Table of n, a(n) for n = 1..1000
Tanya Khovanova, Recursive Sequences
Soumeya M. Tebtoub, Hacène Belbachir, and László Németh, Integer sequences and ellipse chains inside a hyperbola, Proceedings of the 1st International Conference on Algebras, Graphs and Ordered Sets (ALGOS 2020), hal-02918958 [math.cs], 17-18.
Ahmet Tekcan and Alper Erdem, General Terms of All Almost Balancing Numbers of First and Second Type, arXiv:2211.08907 [math.NT], 2022.
Index entries for linear recurrences with constant coefficients, signature (6,-1).
FORMULA
a(1)=3, a(2)=9 then a(n) = 6*a(n-1)-a(n-2).
G.f.: 3*x*(1 - 3*x)/(1 - 6*x + x^2). - Philippe Deléham, Nov 17 2008
a(n) = (3/2)*A003499(n-1).
a(n) = 3*((3-2*sqrt(2))^(n-1) + (3+2*sqrt(2))^(n-1))/2. - Colin Barker, Oct 13 2015
E.g.f.: 3*exp(3*x)*(3*cosh(2*sqrt(2)*x) - 2*sqrt(2)*sinh(2*sqrt(2)*x)) - 9. - Stefano Spezia, Nov 25 2022
MATHEMATICA
CoefficientList[Series[3 x (1 - 3 x)/(1 - 6 x + x^2), {x, 0, 23}], x] (* Michael De Vlieger, Nov 02 2020 *)
PROG
(PARI) Vec((3-9*x)/(1-6*x+x^2)+O(x^99)) \\ Charles R Greathouse IV, Dec 28 2011
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Pierre CAMI, Apr 29 2005
STATUS
approved