The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A301383 Expansion of (1 + 3*x - 2*x^2)/(1 - 7*x + 7*x^2 - x^3). 4
 1, 10, 61, 358, 2089, 12178, 70981, 413710, 2411281, 14053978, 81912589, 477421558, 2782616761, 16218279010, 94527057301, 550944064798, 3211137331489, 18715879924138, 109084142213341, 635788973355910, 3705649697922121, 21598109214176818, 125883005587138789, 733699924308655918 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS y solutions to A000217(x-1) + A000217(x) = A000290(y-1) + A000290(y+2). The corresponding x values are listed in A075841. y solutions to A000217(x-1) + A000217(x) = A000290(y-1) + A000290(y+1) are in A002315, and A075870 gives the x values. y solutions to A000217(x-1) + A000217(x) = A000290(y-1) + A000290(y) are in A046090, and A001653 gives the x values. Also, indices y for which 4*A000217(y) + 5 is a square. The next integers k such that k*A000217(y) + 5 is a square for infinitely many y values are 11, 20, 22, 29, 31, ... First differences are in A106329. LINKS Robert Israel, Table of n, a(n) for n = 0..1304 Index entries for linear recurrences with constant coefficients, signature (7,-7,1). FORMULA O.g.f.: (1 + 3*x - 2*x^2)/((1 - x)*(1 - 6*x + x^2)). a(n) = 7*a(n-1) - 7*a(n-2) + a(n-3) = 6*a(n-1) - a(n-2) + 2. a(n) = (3/4)*((1 + sqrt(2))^(2*n + 1) + (1 - sqrt(2))^(2*n + 1)) - 1/2. a(n) = A033539(2*n+2) = A241976(n+1) + 1 = 3*A001652(n) + 1 = 3*A046090(n) - 2. a(n) = A053142(n+1) + 3*A053142(n) - 2*A053142(n-1), n>0. 2*a(n) = 3*A002315(n)   - 1. 4*a(n) = 3*A077444(n+1) - 2. E.g.f.: (3*exp(3*x)*(cosh(2*sqrt(2)*x) + sqrt(2)*sinh(2*sqrt(2)*x)) - cosh(x) - sinh(x))/2. - Stefano Spezia, Mar 06 2020 MAPLE f:= gfun:-rectoproc({a(n) = 7*a(n-1) - 7*a(n-2) + a(n-3), a(0)=1, a(1)=10, a(2)=61}, a(n), remember): map(f, [\$0..50]); # Robert Israel, Mar 21 2018 MATHEMATICA CoefficientList[Series[(1 + 3 x - 2 x^2)/(1 - 7 x + 7 x^2 - x^3), {x, 0, 30}], x] PROG (PARI) Vec((1+3*x-2*x^2)/(1-7*x+7*x^2-x^3)+O(x^30)) (Maxima) makelist(coeff(taylor((1+3*x-2*x^2)/(1-7*x+7*x^2-x^3), x, 0, n), x, n), n, 0, 30); (Sage) m=30; L. = PowerSeriesRing(ZZ, m); f=(1+3*x-2*x^2)/(1-7*x+7*x^2-x^3); print(f.coefficients()) (MAGMA) m:=30; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1+3*x-2*x^2)/(1-7*x+7*x^2-x^3))); (Julia) using Nemo function A301383List(len)     R, x = PowerSeriesRing(ZZ, len+2, "x")     f = divexact(1+3*x-2*x^2, 1-7*x+7*x^2-x^3)     [coeff(f, k) for k in 0:len] end A301383List(23) |> println # Peter Luschny, Mar 21 2018 CROSSREFS Subsequence of A301451. Cf. A000217, A000290, A001652, A002315, A033539, A046090, A053142, A075841, A077444, A106329, A241976. Sequence in context: A271790 A319965 A025574 * A321386 A015867 A297863 Adjacent sequences:  A301380 A301381 A301382 * A301384 A301385 A301386 KEYWORD nonn,easy AUTHOR Bruno Berselli, Mar 20 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 7 15:08 EDT 2020. Contains 336276 sequences. (Running on oeis4.)